Acta mathematica scientia,Series B
• Articles • Previous Articles Next Articles
Liu Yongping; Yang Lianhong
Received:
Revised:
Online:
Published:
Contact:
Abstract:
For two subsets W and V of a Banach space X, let Kn(W,V,X) denote the relative Kolmogorov n-width of W relative to V defined by
Kn(W,V,X):= infLn supf∈W inf g∈ V∩ Ln || f-g||X, where the infimum is taken over all n-dimensional linear subspaces Ln of X. Let W2(△r) denote the class of 2π-periodic functions f with d-variables satisfying ∫[-π,π]d |△r f(x)|2,dx≤ 1, while △r is the r-iterate of Laplace operator △. This article discusses the relative Kolmogorov n-width of W2(△r)$ relative to W2(△r) in Lq([-π,π]d),(1≤ q≤∞), and obtain its weak asymptotic result.
Key words: Multivariate function classes, width, relative width
CLC Number:
Liu Yongping; Yang Lianhong. RELATIVE WIDTH OF SMOOTH CLASSES OF MULTIVARIATE PERIODIC FUNCTIONS WITH RESTRICTIONS ON ITERATED LAPLACE DERIVATIVES IN THE L2-METRIC[J].Acta mathematica scientia,Series B, 2006, 26(4): 720-728.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(06)60098-2
http://121.43.60.238/sxwlxbB/EN/Y2006/V26/I4/720
Cited