[1] Aziz K, Settari A. Petroleum Reservoir Simulation. London: Applied Science Publishers, 1979 [2] Ewing R E, Lazarov R D, Lyons S L, et al. Numerical well model for non-darcy flow through isotropic porous media. Comput Geosci, 1999, 3(3/4): 185-204 [3] Ruth D, Ma H. On the derivation of the Forchheimer equation by means of the averaging theorem. Transport in Porous Media, 1992, 7(3): 255-264 [4] Fabrie P. Regularity of the solution of Darcy-Forchheimer's equation. Nonlinear Anal Theory Methods Appl, 1989, 13(9): 1025-1049 [5] Douglas Jr J. Finite difference method for two-phase incompressible flow in porous media. SIAM J Numer Anal, 1983, 20(4): 681-696 [6] Douglas Jr J, Yuan Y R.Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedure// Numerical Simulation in Oil Recovery. New York: Springer-Verlag, 1986: 119-132 [7] Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47(1/2): 73-92 [8] Yuan Y R, Cheng A J, Yang D P.Theory and Actual Applications of Numerical Simulation of Oil Reservoir. Beijing: Science Press, 2016 [9] Yuan Y R, Cheng A J, Yang D P, Li C F. Applications, theoretical analysis, numerical method and mechanical model of the polymer flooding in porous media. Special Topics \& Reviews in Porous Media-An International Journal, 2015, 6(4): 383-401 [10] Yuan Y R, Cheng A J, Yang D P, Li C F. Numerical simulation method, theory and applications of three-phase (oil, gas, water) chemical-agent oil recovery in porous media. Special Topics \& Reviews in Porous Media-An International Journal.2016, 7(3): 245-272 [11] Girault V, Wheeler M F. Numerical discretization of a Darcy-Forchheimer model. Numer Math, 2008, 110(2): 161-198 [12] Lopez H, Molina B, Salas J J. Comparison between different numerical discretization for a Darcy-Forchheimer model. Electron Trans Numer Anal, 2009, 34: 187-203 [13] Douglas Jr J, Paes-Leme P J, Giorgi T. Generalized Forchheimer flow in porous media// Lions J L, Baiocchi C. Boundary Value Problems for Partial Differential Equations and Applications. Paris: Masson, 1993: 99-111 [14] Park E J. Mixed finite element method for generalized Forchheimer flow in porous media. Numer Methods Partial Differential Equations, 2005, 21(2): 213-228 [15] Pan H, Rui H X. Mixed element method for two-dimensional Darcy-Forchheimer model. J Sci Comput, 2012, 52(3): 563-587 [16] Pan H, Rui H X. A mixed element method for Darcy-Forchheimer incompressible miscible displacement problem. Comput Methods Appl Mech Engrg, 2013, 264: 1-11 [17] Yuan Y R.Theory and Application of Numerical Simulation of Energy Sources. Beijing: Science Press, 2013 [18] Yuan Y R, Rui H X, Cheng A J.Theory and application of numerical simulation of modern oil water reservoir// Numerical Method for Non-Darcy Flow Problem. Beijing: Science Press, 2020 [19] Dawson C N, Russell T F, Wheeler M F. Some improved error estimates for the modified method of characteristics. SIAM J Numer Anal, 1989, 26(6): 1487-1512 [20] Yuan Y R. Characteristic finite difference methods for positive semidefinite problem of two phase miscible flow in porous media. J Systems Sci Math Sci, 1999, 12(4): 299-306 [21] Yuan Y R. Characteristic finite element scheme and analysis the three-dimensional two-phase displacement semi-definite problem. Chin Sci Bull, 1997, 1: 17-32 [22] Daswon C N. Godunov-mixed methods for advection-diffusion equations in multidimensions. SIAM J Numer Anal, 1993, 30(5): 1315-1332 [23] Bramble J H, Pasciak J E, Sammon P H, Thomee V. Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Mathematics of Computation, 1989, 52(186): 339-367 [24] Cella M A, Russell T F, Herrera I, Ewing R E. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equations. Adv Water Resour, 1990, 13(4): 187-206 [25] Dawson C N, Aizinger V. Upwind-mixed methods for transport equations. Computational Geosciences, 1999, 3: 93-110 [26] Brunner F, Radu F A, Bause M, Knabner P. Optimal order convergence of a modified BDM mixed finite element scheme for reactive transport in porous media. Adv Water Resour, 2012, 35: 163-171 [27] Arbogast T, Wheeler M F, Yotov I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J Numer Anal, 1997, 34(2): 828-852 [28] Douglas Jr J, Roberts J E. Global estimates for mixed methods for second order elliptic equations. Math Comp, 1985, 44(169): 39-52 [29] Bramble J H, Ewing R E, Li G. Alternating direction multistep methods for parabolic problems iterative stabilization. SIAM J Numer Anal, 1989, 26(4): 904-919 |