[1] Ewing R E, Yuan Y R, Li G. Finite element for chemical-flooding simulation. Proceeding of the 7th International conference finite element method in flow problems. The University of Alabama in Huntsville, Huntsville, Alabama:UAHDRESS, 1989:1264-1271 [2] Yuan Y R. Theory and application of numerical simulation of energy sources. Beijing:Science Press, 2013:257-304 [3] Yuan Y R, Yang D P, Qi L Q, et al. Research on algorithms of applied software of the polymer. Qinlin Gang, Proceedings on chemical flooding. Beijing:Petroleum Industry Press, 1998:246-253 [4] Institute of Mathematics, Shandong University, Exploration Institute of Daqing Petroleum Administration Bureau. Research and application of the polymer flooding software (summary of "Eighth-Five" national key science and technology program, Grant No. 85-203-01-08), 1995.10 [5] Institute of Mathematics, Shandong University, Exploration and development of Daqing Petroleum Corporation. Modification of solving mathematical models of the polymer and improvement of reservoir description (DQYT-1201002-2006-JS-9765). 2006.10 [6] Institute of Mathematics, Shandong University, Shengli Oilfield Branch, China Petroleum & Chemical. Research on key technology of high temperature and high salinity chemical agent displacement (2008ZX05011-004), 83-106. 2011.3 [7] Bird R B, Lightfoot W E, Stewart E N. Transport Phenomenon. New York:John Wiley and Sons, 1960 [8] Ewing R E. The Mathematics of Reservior Simulation. Philadelphia:SIAM, 1983 [9] Douglas J Jr. Finite difference method for two-phase in compressible flwo in porous media. SIAM J Numer Anal, 1983, 20(4):681-696 [10] Russell T F. Time stepping along characteristics with incomplete interaction for a Galerkin approximation of miscible displacement in porous media. SLAM J Numer Anal, 1985, 22(5):970-1013 [11] Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47(1/2):73-92 [12] Douglas Jr J, Yuan Y R. Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedure. Numerical Simulation in Oil Rewvery. New York:Springer-Berlag, 1986:119-132 [13] Yuan Y R. Characteristic finite difference methods for positive semidefinite problem of two phase miscible flow in porous media. J Systems Sci Math Sci, 1999, 12(4):299-306 [14] Yuan Y R. Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions. Chin Sci Bull, 1996, 41(22):2027-2032 [15] Todd M R, O'Dell P M, Hirasaki G J. Methods for increased accuracy in numerical reservoir simulators. Soc Petrol Engry J, 1972, 12(6):521-530 [16] Bell J B, Dawson C N, Shubin G R. An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions. J Comput Phys, 1988, 74(1):1-24 [17] Johnson C. Streamline diffusion methods for problems in fluid mechanics//Finite Element in Fluids VI. New York:Wiley, 1986 [18] Yang D P. Analysis of least-squares mixed finite element methods for nonlinear nonstationary convectiondiffusion problems. Math Comp, 2000, 69(231):929-963 [19] Dawson C N, Russell T F, Wheeler M F. Some improved error estimates for the modified method of characteristics. SIAM J Numer Anal, 1989, 26(6):1487-1512 [20] Cella M A, Russell T F, Herrera I, Ewing R E. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equations. Adv Water Resour, 1990, 13(4):187-206 [21] Raviart P A, Thomas J M. A mixed finite element method for second order elliptic problems//Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, 606. Berlin:Springer-Verlag, 1977 [22] Douglas J Jr, Ewing R E, Wheeler M F. Approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal Numer, 1983, 17(1):17-33 [23] Douglas J Jr, Ewing R E, Wheeler M F. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal Numer, 1983, 17(3):249-265 [24] Arbogast T, Wheeler M F. A charcteristics-mixed finite element methods for advection-dominated transport problems. SIAMJ Numer Anal, 1995, 32(2):404-424 [25] Douglas J Jr, Roberts J E. Numerical methods for a model for compressible miscible displacement in porous media. Math Comp, 1983, 41(164):441-459 [26] Yuan Y R. The characteristic finite element alternating direction method with moving meshes for nonlinear convection-dominated diffusion problems. Numer Meth Part D E, 2006, 22(3):661-679 [27] Yuan Y R. The modified method of characteristics with finite element operator-splitting procedures for compressible multi-component displacement problem. J Syst Sci Complexj, 2003, 16(1):30-45 [28] Yuan Y R. The characteristic finite difference fractional steps method for compressible two-phase displacement problem (in Chinese). Sci Sin Math, 1999, 42(1):48-57 [29] Yuan Y R. The upwind finite difference fractional steps methods for two-phase compressible flow in porous media. Numer Meth Part D E, 2003, 19(1):67-88 [30] Sun T J, Yuan Y R. An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method. J Comput Appl Math, 2009, 228(1):391-411 [31] Sun T J, Yuan Y R. Mixed finite method and characteristics-mixed finite element method for a slightly compressible miscible displacement problem in porous media. Math Comput Simulat, 2015, 107:24-45 [32] Cai Z. On the finite volume element method. Numer Math, 1991, 58(1):713-735 [33] Li R H, Chen Z Y. Generalized difference of differential equations. Changchun:Jilin University Press, 1994 [34] Russell T F. Rigorous block-centered discritization on inregular grids:Improved simulation of complex reservoir systems. Project Report. Tulsa:Research Comporation, 1995 [35] Weiser A, Wheeler M F. On convergence of block-centered finite difference for elliptic problems. SIAM J Numer Anal, 1988, 25(2):351-375 [36] Jones J E. A mixed volume method for accurate computation of fluid velocities in porous media[D/OL]. Denver, Co:University of Colorado, 1995 [37] Cai Z, Jones J E, Mccormilk S F, Russell T F. Control-volume mixed finite element methods. Comput Geosci, 1997, 1(3):289-315 [38] Chou S H, Kawk D Y, Vassileviki P. Mixed volume methods on rectangular grids for elliptic problem. SIAM J Numer Anal, 2000, 37(3):758-771 [39] Chou S H, Kawk D Y, Vassileviki P. Mixed volume methods for elliptic problems on trianglar grids. SIAM J Numer Anal, 1998, 35(5):1850-1861 [40] Chou S H, Vassileviki P. A general mixed covolume frame work for constructing conservative schemes for elliptic problems. Math Comp, 1999, 68(227):991-1011 [41] Rui H X, Pan H. A block-centered finite difference method for the Darcy-Forchheimer Model. SIAM J Numer Anal, 2012, 50(5):2612-2631 [42] Pan H, Rui H X. Mixed element method for two-dimensional Darcy-Forchheimer model. J Sci Comput, 2012, 52(3):563-587 [43] Yuan Y R, Cheng A J, Yang D P, Li C F. Convergence analysis of an implicit upwind difference fractional step method of three-dimensional enhanced oil recovery percolation coupled system. Sci China Math, 2014, 44(10):1035-1058 [44] Yuan Y R, Cheng A J, Yang D P, Li C F. Theory and application of fractional steps characteristic-finite difference method in numerical simulation of second order enhanced oil production. Acta Mathematica Scientia, 2015, 35B(4):1547-1565 [45] Yuan Y R. Fractional step finite difference method for multi-dimensional mathematical-physical problems. Beijing:Science Press, 2015.6 [46] Shen P P, Liu M X, Tang L. Mathematical model of petroleum exploration and development. Beijing:Science Press, 2002 [47] Ewing R E, Wheeler M F. Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratis case. Proc Special Year in Numerical Anal. Lecture Notes #20. Univ Maryland, College Park, 1981:151-174 [48] Nitsche J. Linear splint-funktionen and die methoden von Ritz for elliptishce randwert probleme. Arch for Rational Mech and Anal, 1968, 36:348-355 [49] Douglas J Jr. Simulation of miscible displacement in porous media by a modified method of characteristic procedure//Dundee. Numerical Analysis, 1981. Lecture Notes in Mathematics, 912. Berlin:Springer-Verlag, 1982 |