Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (2): 650-670.doi: 10.1007/s10473-024-0215-y
Previous Articles Next Articles
Zhiyong SI
Received:
2022-11-20
Revised:
2023-01-08
Online:
2024-04-25
Published:
2024-04-16
About author:
Zhiyong SI, E-mail: sizhiyong@hpu.edu.cn
Supported by:
CLC Number:
Zhiyong SI. A GENERALIZED SCALAR AUXILIARY VARIABLE METHOD FOR THE TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS[J].Acta mathematica scientia,Series B, 2024, 44(2): 650-670.
[1] Chen Z, Dai S.Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J Numer Anal, 2001, 38: 1961-1985 [2] Chen Z, Hoffmann K. Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv Math Sci Appl, 1995, 5: 363-389 [3] Chen Z, Hoffmann K, Liang J. On a non-stationary Ginzburg-Landau superconductivity model. Math Method Appl Sci, 1993, 16: 855-875 [4] Du Q. Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl Anal, 1994, 53: 1-17 [5] Du Q. Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity. Comput Math Appl, 1994, 27: 119-133 [6] Ganesh M, Thompson T. A spectrally accurate algorithm and analysis for a Ginzburg-Landau model on superconducting surfaces. Multiscale Model Sim, 2018, 16: 78-105 [7] Gao H, Ju L, Xie W. A stabilized semi-implicit Euler gauge-invariant method for the time-dependent Ginzburg-Landau equations. J Sci Comput, 2019, 80: 1083-1115 [8] Gao H, Li B, Sun W. Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J Numer Anal, 2014, 52: 1183-1202 [9] Gao H, Sun W. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. J Comput Phys, 2015, 294: 329-345 [10] Gao H, Sun W. A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge. SIAM J Sci Comput, 2016, 38: A1339-A1357 [11] Gao H, Sun W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity. Adv Comput Math, 2018, 44: 923-949 [12] Gor'kov L, Éliashberg G. Generalization of the Ginburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov J Exp Theo Phys, 1968, 27: 328-334 [13] Huang F, Shen J. A new class of implicit-explicit BDF ![]() [14] Huang F, Shen J, Yang Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J Sci Comput, 2020, 42: A2514-A2536 [15] Hecht F. New development in FreeFem++. J Numer Math, 2012, 20: 251-266 [16] Heywood J, Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem. part IV: Error analysis for second-order time discretization. SIAM J Numer Anal, 1990, 27: 353-384 [17] Jiang M, Zhang Z, Zhao J. Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J Comput Phys, 2022, 456: 110954 [18] Ju L, Li X, Qiao Z.Generalized SAV-exponential integrator Schemes for Allen-Cahn type gradient flows. SIAM J Numer Anal, 2022, 60(4): 1905-1931 [19] Ju L, Li X, Qiao Z. Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen-Cahn type equations. J Sci Comput, 2022, 92: Art 66 [20] Li B, Wang K, Zhang Z. A Hodge decomposition method for dynamic Ginzburg-Landau equations in nonsmooth domains-a second approach. Commun Comput Phys, 2020, 28: 768-802 [21] Li B, Zhang Z. Mathematical and numerical analysis of the time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decomposition. Math Comput, 2017, 86: 1579-1608 [22] Li B, Zhang Z. A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations. J Comput Phys, 2015, 303: 238-250 [23] Liu F, Mondello M, Goldenfeld N. Kinetics of the superconducting transition. Phys Rev Lett, 1991, 66: 3071-3074 [24] Mu M, Huang Y. An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM J Numer Anal, 1998, 35: 1740-1761 [25] Nochetto R, Pyo J. Optimal relaxation parameter for the Uzawa method. Numer Math, 2004, 98: 695-702 [26] Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows. J Comput Phys, 2018, 353: 407-416 [27] Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev, 2019, 61: 474-506 [28] Shen J, Zhang X X. Discrete maximum principle of a high order finite difference scheme for a generalized Allen-Cahn equation. Commun Math Sci, 2022, 20: 1409-1436 [29] Tan Z, Tang H. A general class of linear unconditionally energy stable schemes for the gradient flows. J Comput Phys, 2022, 464: 111372 [30] Tang T, Qiao Z.Efficient numerical methods for phase-field equations (in Chinese). Sci Sin Math, 2020, 50: 1-20 [31] Wang Y, Si Z. A convex splitting method for the time-dependent Ginzburg-Landau equation. Numer Algor, 2023. https://doi.org/10.1007/s11075-023-01672-0 [32] Wu C, Sun W. Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg-Landau equations under temporal gauge. SIAM J Numer Anal, 2018, 56: 1291-1312 [33] Zhang Y, Shen J. A generalized SAV approach with relaxation for dissipative systems. J Comput Phys, 2022, 464: 111311 |
[1] | Minh-Phuong TRAN, Thanh-Nhan NGUYEN, Phuoc-Toan HUYNH, Nhu-Binh LY, Minh-Dang NGUYEN, Quoc-Anh HO. CONVERGENCE RESULTS FOR NON-OVERLAP SCHWARZ WAVEFORM RELAXATION ALGORITHM WITH CHANGING TRANSMISSION CONDITIONS [J]. Acta mathematica scientia,Series B, 2022, 42(1): 105-126. |
[2] | Temur JANGVELADZE, Zurab KIGURADZE, Mikheil GAGOSHIDZE. ECONOMICAL DIFFERENCE SCHEME FOR ONE MULTI-DIMENSIONAL NONLINEAR SYSTEM [J]. Acta mathematica scientia,Series B, 2019, 39(4): 971-988. |
[3] | Helmer A. FRIIS, Steinar EVJE. WELL-POSEDNESS OF A COMPRESSIBLE GAS-LIQUID MODEL FOR DEEPWATER OIL WELL OPERATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(1): 107-124. |
[4] | GAO Li-Ping. STABILITY AND SUPER CONVERGENCE ANALYSIS OF ADI-FDTD FOR THE 2D MAXWELL EQUATIONS IN A LOSSY MEDIUM [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2341-2368. |
[5] | Steinar Evje, K.H. Karlsen. ANALYSIS OF A COMPRESSIBLE GAS-LIQUID MODEL MOTIVATED BY OIL WELL CONTROL OPERATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 295-314. |
[6] | FANG Neng-Sheng, YING Long-An. ANALYSIS OF FDTD TO UPML FOR MAXWELL EQUATIONS IN POLAR COORDINATES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 2007-2032. |
[7] | Philippe G. LeFloch, Siddhartha Mishra. KINETIC FUNCTIONS IN MAGNETOHYDRODYNAMICS WITH RESISTIVITY AND HALL EFFECT [J]. Acta mathematica scientia,Series B, 2009, 29(6): 1684-1702. |
[8] | Ju Qiangchang, Chen Li. SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL [J]. Acta mathematica scientia,Series B, 2009, 29(2): 285-293. |
[9] | Yirang Yuan, Changfeng Li, Tongjun Sun, Qing Yang. A MIXED FINITE ELEMENT AND CHARACTERISTIC MIXED FINITE ELEMENT FOR INCOMPRESSIBLE MISCIBLE DARCY-FORCHHEIMER DISPLACEMENT AND NUMERICAL ANALYSIS* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2026-2042. |
[10] | Xia Tao, Ziqing Xie. THE UNIFORM CONVERGENCE OF A DG METHOD FOR A SINGULARLY PERTURBED VOLTERRA INTEGRO-DIFFERENTIAL EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2159-2178. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|