Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (5): 2159-2178.doi: 10.1007/s10473-023-0514-8
Previous Articles Next Articles
Xia Tao1,2, Ziqing Xie2†
Received:
2021-12-18
Revised:
2023-05-04
Published:
2023-10-25
Contact:
†Ziqing Xie, ziqingxie@hunnu.edu.cn
About author:
Xia Tao, E-mail: xiatao@hnist.edu.cn
Supported by:
CLC Number:
Xia Tao, Ziqing Xie. THE UNIFORM CONVERGENCE OF A DG METHOD FOR A SINGULARLY PERTURBED VOLTERRA INTEGRO-DIFFERENTIAL EQUATION*[J].Acta mathematica scientia,Series B, 2023, 43(5): 2159-2178.
[1] Brunner H.Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge: Cambridge University Press, 2004 [2] Roos H G, Stynes M, Tobiska L.Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problem. Berlin: Springer, 2008 [3] Ramos J I. Exponential techniques and implicit Runge-Kutta methods for singularly-perturbed Volterra integro-differential equations. Neural, Parallel & Sci Comput, 2008, 16: 387-404 [4] Amiraliyev G M, Sevgin A. Uniform difference method for singularly perturbed Volterra integro-differential equations. Appl Math Comput, 2006, 179: 731-741 [5] Cen Z D, Xi L F. A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies//Processings of the 5th WSEAS Int Conference on Information Security and Privacy, Venice, Italy, 2006, November 20-22: 147-151 [6] Mbroh N A, Noutchie N C O, Masssoukou R Y M. A second order finite difference scheme for singularly perturbed Volterra integro-differential equation. Alex Eng J, 2020, 59: 2441-2447 [7] Iragi B C, Munyakazi J B. New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations. Appl Math Infor Sci, 2018, 12: 517-527 [8] Iragi B C, Munyakazi J B. A uniform convergent numerical method for a singularly perturbed Volterra integro-differential equation. Int J Comput Math, 2020, 97: 759-771 [9] Yapman Ö, Amiraliyev G M. A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation. Int J Comput Math, 2020, 97: 1293-1302 [10] Long G Q, Liu L B, Huang Z T. Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations. Numer Funt Anal Opt, 2021, 42: 739-757 [11] Kauthen J P. Implicit Runge-Kutta methods for some integrodifferential-algebraic equations. Appl Numer Math, 1993, 13: 125-134 [12] Horvat V, Rogina M. Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations. Comput Appl Math, 2002, 140: 381-402 [13] Tao X, Zhang Y H. The coupled method for singularly perturbed Volterra integro-differential equations. Adv Differ Equ, 2019, 2019: 1-16 [14] Reed W H, Hill T R.Triangular mesh methods for neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973 [15] Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440-2463 [16] Celiker F, Cockburn B. Superconvergence of the numerical traces of discontinous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math Comput, 2007, 76: 67-96 [17] Xie Z Q, Zhang Z. Superconvergence of DG method for one-dimensional singularly perturbed problems. J Comput Math, 2007, 25: 185-200 [18] Xie Z Q, Zhang Z. Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math Comput, 2010, 79: 35-45 [19] Zeng Z K, Chen Y P. A local discontinuous Galerkin method for fractional diffusion equations. Acta Mathematica Scientia, 2023, 43B(2): 839-854 [20] Larsson S, Thomée V, Wahlbin L B. Numerical solution of parabolic integro-differential equations by the discontinuos Galerkin method. Math Comput, 1998, 87: 45-71 [21] Brunner H, Schötzau D. ![]() ![]() [22] Chen C M, Shih T.Finite Element Methods for Integrodifferential Equations. Singapore: World Scientific, 1998 [23] Kauthen J P. A survey of singularly perturbed Volterra equations. Appl Numer Math, 1997, 24: 95-114 [24] Angell J S, Olmstead W E. Singularly perturbed Volterra integral equations. SIAM J Numer Math, 1987, 47(1): 1-14 [25] Angell J S, Olmstead W E. Singularly perturbed Volterra integral equations II. SIAM J Numer Math, 1987, 47(6): 1150-1162 [26] Bijura A M. Rigorous results on the asymptotic solutions of singularly perturbed nonlinear Volterra integral equations. J Integral Equ Appl, 2002, 14(2): 119-149 [27] Bijura A M. Asymptotics of integrodifferential models with integrable kernels. Int J Math Math Sci, 2003, 2003(25): 1577-1598 [28] Jordan G S. A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type. Proc Roy Soc Edinburgh Sect A, 1978, 80: 235-247 [29] Jordan G S.Some nonlinear singularly perturbed Volterra integro-differential equations//Londen S, Staffans O. Volterra Equations. Berlin: Springer, 1979: 107-119 [30] Lodge A S, Mcleod J B, Nohel J E. A nonlinear singularly perturbed Volterra integrodifferential equation occuring in polymer rheology. Proc Roy Soc Edinburgh Sect A, 1978, 80: 99-137 [31] Mustapha K, Mclean W. Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math Comput, 2009, 78(268): 1975-1995 |
[1] | Huoyuan DUAN, Junhua MA. CONTINUOUS FINITE ELEMENT METHODS FOR REISSNER-MINDLIN PLATE PROBLEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 450-470. |
[2] | WANG Bo, XIE Zi-Qing, ZHANG Zhi-Min. SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1357-1376. |
[3] | ZHOU Jie-Ming, MO Xiao-Yun, OU Hui, YANG Xiang-Qun. EXPECTED PRESENT VALUE OF TOTAL DIVIDENDS IN THE COMPOUND BINOMIAL MODEL WITH DELAYED CLAIMS AND RANDOM INCOME [J]. Acta mathematica scientia,Series B, 2013, 33(6): 1639-1651. |
[4] | TU Tian-Liang, MO Jiong. COMPLEX RATIONAL TYPE INTERPOLATION AT DISTURBED FEJ´|ER POINTS ON A CURVE [J]. Acta mathematica scientia,Series B, 2012, 32(2): 441-454. |
[5] | LIU Juan, XU Jian-Cheng, HU Yi-Jun. ON THE EXPECTED DISCOUNTED PENALTY FUNCTION IN A MARKOV-DEPENDENT RISK MODEL WITH CONSTANT DIVIDEND BARRIER [J]. Acta mathematica scientia,Series B, 2010, 30(5): 1481-1491. |
[6] | FANG Ying, WU Rong. ON THE RENEWAL RISK MODEL WITH INTEREST AND DIVIDEND [J]. Acta mathematica scientia,Series B, 2010, 30(5): 1730-1738. |
[7] | YUAN Hai-Li, HU Yi-Jun. OPTIMAL PROPORTIONAL REINSURANCE WITH CONSTANT DIVIDEND BARRIER [J]. Acta mathematica scientia,Series B, 2010, 30(3): 791-798. |
[8] | Zhou Ming; Guo Junyi. CLASSICAL RISK MODEL WITH THRESHOLD DIVIDEND STRATEGY [J]. Acta mathematica scientia,Series B, 2008, 28(2): 355-362. |
[9] | BANG Zhi-Gang, LIU Lun-Gang. EXTREME POINTS AND SUPPORT POINTS OF A CLASS OF ANALYTIC FUNCTIONS [J]. Acta mathematica scientia,Series B, 2000, 20(1): 131-136. |
[10] | BANG Zhi-Gang. THE SUPPORT POINTS AND EXTREME POINTS OF THE UNIT BALL OF H'_P~ 1 [J]. Acta mathematica scientia,Series B, 1999, 19(2): 181-189. |
[11] | Zhu Lixing. GLIVENKO-CANTELLI TYPE THEOREMS AND THEIR APPLICATIONS [J]. Acta mathematica scientia,Series B, 1997, 17(3): 309-318. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 11
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|