Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (5): 2108-2120.doi: 10.1007/s10473-023-0511-y
Previous Articles Next Articles
Tao Yan, Lu Zhang, Aihong Zou, Ji Shu
Received:
2021-11-16
Revised:
2023-04-20
Published:
2023-10-25
Contact:
Ji Shu, E-mail: shuji@sicnu.edu.cn
About author:
Tao Yan, E-mail: 303809632@qq.com; Lu Zhang, E-mail: 786614079@qq.com; Aihong Zou, E-mail: 1760152877@qq.com
Supported by:
CLC Number:
Tao Yan, Lu Zhang, Aihong Zou, Ji Shu. DYNAMICS OF THE STOCHASTIC $g$-NAVIER-STOKES EQUATIONS DRIVEN BY NONLINEAR NOISE*[J].Acta mathematica scientia,Series B, 2023, 43(5): 2108-2120.
[1] Bates P W, Lu K, Wang B. Random attractors for stochastic reaction diffusion equations on unbounded domains. J Differential Equations, 2009, 246: 845-869 [2] Bae H O, Roh J. Existence of solutions of the $g$-Navier-Stokes equations. Taiwanese J Math, 2004, 8: 85-102 [3] Beyn W J, Gess B, Lescot P, et al. The global random attractor for a class of stochastic porous media equations. Comm Partial Differential Equations, 2011, 36: 446-469 [4] Capinski M, Cutland N J. Existence of global stochastic flow and attractors for Navier-Stokes equations. Probab Theory Related Fields, 1999, 115: 121-151 [5] Caraballo T, Garrido-Atienza M J, Schmalfuss B, et al. Non-autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete Contin Dyn Syst, 2008, 21: 415-443 [6] Caraballo T, Real J, Chueshov I D. Pullback attractors for stochastic heat equations in materials with memory. Discrete Contin Dyn Syst Ser B, 2008, 9: 525-539 [7] Caraballo T, Langa J A.On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn Contin Discrete Impuls Syst Ser A Math Anal, 2003, 10: 491-513 [8] Caraballo T, Garrido-Atienza M J, Schmalfuss B, et al. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete Contin Dyn Syst Ser B, 2010, 14: 439-455 [9] Caraballo T, Garrido-Atienza M J, Taniguchi T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74: 3671-3684 [10] Caraballo T, Langa J A, Melnik V S, et al. Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal, 2003, 11: 153-201 [11] Chueshov I, Millet A. Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl Math Optim, 2010, 61: 379-420 [12] Chueshov I, Scheutzow M. On the structure of attractors and invariant measures for a class of monotone random systems. Dyn Syst, 2004, 19: 127-144 [13] Chueshov I.Monotone Random Systems Theory and Applications. Lecture Notes in Mathematics, Vol 1779. Berlin: Springer-Verlag, 2002 [14] Crauel H, Debussche A, Flandoli F. Random attractors. J Dynam Differential Equations, 1997, 9: 307-341 [15] Crauel H, Flandoli F. Attractors for random dynamical systems. Probab Theory Related Fields, 1994, 100: 365-393 [16] Flandoli F, Schmalfuss B. Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stochastics Stochastics Rep, 1996, 59: 21-45 [17] Garrido-Atienza M J, Schmalfuss B. Ergodicity of the infinite dimensional fractional Brownian motion. J Dynam Differential Equations, 2011, 23: 671-681 [18] Garrido-Atienza M J, Ogrowsky A, Schmalfuss B. Random differential equations with random delays. Stoch Dyn, 2011, 11: 369-388 [19] Garrido-Atienza M J, Maslowski B, Schmalfuss B. Random attractors for stochastic equations driven by a fractional Brownian motion. Internat J Bifur Chaos Appl Sci Engrg, 2010, 20: 2761-2782 [20] Gess B, Liu W, Rockner M. Random attractors for a class of stochastic partial differential equations driven by general additive noise. J Differential Equations, 2011, 251: 1225-1253 [21] Gess B. Random attractors for degenerate stochastic partial differential equations. J Dynam Differential Equations, 2013, 25: 121-157 [22] Gess B. Random attractors for singular stochastic evolution equations. J Differential Equations, 2013, 255: 524-559 [23] Kloeden P E, Langa J A. Flattening, squeezing and the existence of random attractors. Proc R Soc Lond Ser A Math Phys Eng Sci, 2007, 463: 163-181 [24] Kloeden P E, Rasmussen M. Nonautonomous Dynamical Systems.Mathematical Surveys and Monographs, Vol 176. Providence: American Mathematical Society, 2011 [25] Ladyzhenskaya O.New equations for the description of the viscous incompressible fluids and solvability in large of the boundary value problems for them//Boundary Value Problems of Mathematical Physics. Providence: American Mathematical Society, 1970 [26] Roh J.$g$-Navier-Stokes Equations[D]. Minnesota: University of Minnesota, 2001 [27] Schmalfuss B.Backward cocycles and attractors of stochastic differential equations//International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior. Dresden, 1992: 185-192 [28] Wang B. Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains. J Differential Equations, 2009, 246: 2506-2537 [29] Wang B. Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R}^{3} $. Trans Amer Math Soc, 2011, 363: 3639-3663 [30] Wang B. Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J Diffferential Equations, 2012, 253: 1544-1583 [31] Wang B. Weak pullback attractors for mean random dynamical systems in Bochner spaces. J Dynam Differential Equations, 2019, 31: 2177-2204 [32] Wang B. Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise. J Math Anal Appl, 2019, 477: 104-132 [33] Wang B. Weak pullback attractors for stochastic Navier-Stokes equations with nonlinear diffusion terms. Proc Amer Math Soc, 2019, 147: 1627-1638 [34] Wang R, Guo B, Wang B. Well-posedness and dynamics of fractional FitzHugh-Nagumo systems on $\mathbb{R}^{N}$ driven by nonlinear noise. Sci China Math, 2020, 64(11): 2395-2436 [35] Prato G D, Zabczyk J.Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge University Press, 1992 [36] Zhao W, Zhang Y. Upper semi-continuity of random attractors for a non-autonomous dynamical system with a weak convergence condition. Acta Math Sci, 2020, 40B(4): 921-933 |
[1] | Caidi ZHAO, Zehan LIN, T. Tachim MEDJO. GEVREY CLASS REGULARITY FOR THE GLOBAL ATTRACTOR OF A TWO-DIMENSIONAL NON-NEWTONIAN FLUID [J]. Acta mathematica scientia,Series B, 2022, 42(1): 265-282. |
[2] | Shanshan GUO, Zhong TAN. ON INTEGRABILITY UP TO THE BOUNDARY OF THE WEAK SOLUTIONS TO A NON-NEWTONIAN FLUID [J]. Acta mathematica scientia,Series B, 2019, 39(2): 420-428. |
[3] | Jie PAN, Li FANG, Zhenhua GUO. STABILITY OF BOUNDARY LAYER TO AN OUTFLOW PROBLEM FOR A COMPRESSIBLE NON-NEWTONIAN FLUID IN THE HALF SPACE [J]. Acta mathematica scientia,Series B, 2019, 39(1): 259-283. |
[4] | Chengzhi WANG, Mingshu ZHANG, Caidi ZHAO. EXISTENCE OF THE UNIFORM TRAJECTORY ATTRACTOR FOR A 3D INCOMPRESSIBLE NON-NEWTONIAN FLUID FLOW [J]. Acta mathematica scientia,Series B, 2018, 38(1): 187-202. |
[5] | Yue GUAN, Hua ZHANG. CONVERGENCE OF INVARIANT MEASURES FOR MULTIVALUED STOCHASTIC DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 487-498. |
[6] | FANG Li,LI ZiLai. ON THE EXISTENCE OF LOCAL CLASSICAL SOLUTION FOR A CLASS OF ONE-DIMENSIONAL COMPRESSIBLE NON-NEWTONIAN FLUIDS [J]. Acta mathematica scientia,Series B, 2015, 35(1): 157-181. |
[7] | ZHAO Cai-De, Jia Xiao-Lin, YANG Xin-Bo. UNIFORM ATTRACTOR FOR NONAUTONOMOUS INCOMPRESSIBLE NON-NEWTONIAN FLUID WITH A NEW CLASS OF EXTERNAL FORCES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1803-1812. |
[8] | ZHAO Cai-De, LI Yong-Sheng, ZHOU Sheng-Fan. RANDOM ATTRACTOR FOR A TWO-DIMENSIONAL INCOMPRESSIBLE NON-NEWTONIAN FLUID\\ WITH MULTIPLICATIVE NOISE [J]. Acta mathematica scientia,Series B, 2011, 31(2): 567-575. |
[9] | TANG Jun-Min, ZHANG Ji-Hong, ZHANG Xiong-Ying. UNIQUENESS, ERGODICITY AND UNIDIMENSIONALITY OF INVARIANT MEASURES UNDER A MARKOV OPERATOR [J]. Acta mathematica scientia,Series B, 2009, 29(5): 1309-1322. |
|