Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 907-918.doi: 10.1007/s10473-023-0222-4
Previous Articles Next Articles
Jingyu, Li, Yong, Zhang†
Received:
2021-11-16
Revised:
2022-08-03
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Yong Zhang, E-mail: About author:
Jingyu Li, E-mail: jingyul20@mails.jlu.edu.cn
Supported by:
Jingyu, Li, Yong, Zhang. THE LAW OF THE ITERATED LOGARITHM FOR SPATIAL AVERAGES OF THE STOCHASTIC HEAT EQUATION*[J].Acta mathematica scientia,Series B, 2023, 43(2): 907-918.
[1] Walsh J B.An introduction to stochastic partial differential equations//Carmona R, Kesten H, Walsh J B, Hennequin P L. Ècole d'Été de Probabilités de Saint-Flour, XIV-1984. Berlin: Springer, 1986: 265-439 [2] Huang J Y, Nualart D, Viitasaari L.A central limit theorem for the stochastic heat equation. Stochastic Process Appl, 2020, 130(12): 7170-7184 [3] Chen L, Khoshnevisan D, Nualart D, et al. Spatial ergodicity for SPDEs via Poincaré-type inequalities. Electron J Probab, 2021, 26: Art 140 [4] Chen L, Khoshnevisan D, Nualart D, et al. Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein's method. Stoch PDE: Anal Comp, 2021. https://doi.org/10.1007/s40072-021-00224-8 [5] Chen L, Khoshnevisan D, Nualart D, et al.Central limit theorems for parabolic stochastic partial differential equations. Ann Inst Henri Poincaré Probab Stat, 2022, 58(2): 1052-1077 [6] Chen L, Khoshnevisan D, Nualart D, et al.Spatial ergodicity and central limit theorems for parabolic Anderson model with delta initial condition. J Funct Anal, 2022, 282(2): 109290 [7] Chen X.Precise intermittency for the parabolic Anderson equation with an (1+1)-dimensional time-space white noise. Ann Inst Henri Poincaré Probab Stat, 2015, 51(4): 1486-1499 [8] Hu Y Z.Some recent progress on stochastic heat equations. Acta Math Sci, 2019, 39B(3): 874-914 [9] Huang J Y, Nualart D, Viitasaari L, et al.Gaussian fluctuations for the stochastic heat equation with colored noise. Stoch Partial Differ Equ Anal Comput, 2020, 8(2): 402-421 [10] Khoshnevisan D, Nualart D, Pu F.Spatial stationarity, ergodicity, and CLT for parabolic Anderson model with delta initial condition in dimension d ≡ 1. SIAM J Math Anal, 2021, 53(2): 2084-2133 [11] Kim K, Yi J.Limit theorems for time-dependent averages of nonlinear stochastic heat equations. Bernoulli, 2022, 28(1): 214-238 [12] Li J Y, Zhang Y.An almost sure central limit theorem for the stochastic heat equation. Statist Probab Lett, 2021, 177: 109149 [13] Li J Y, Zhang Y.An almost sure central limit theorem for the parabolic Anderson model with delta initial condition. Stochastics, 2022. https://doi.org/10.1080/17442508.2022.2088236 [14] Nualart D, Zheng G Q.Averaging Gaussian functionals. Electron J Probab, 2020, 25: 1-54 [15] Khinchine A.Über einen Satz der Wahrscheinlichkeitsrechnung. Fund Math, 1924, 6(1): 9-20 [16] Kolmogoroff A.Über das Gesetz des iterierten Logarithmus. Math Ann, 1929, 101(1): 126-135 [17] Hartman P, Wintner A.On the law of the iterated logarithm. Amer J Math, 1941, 63: 169-176 [18] Strassen V.An invariance principle for the law of the iterated logarithm. Z Wahrsch Verw Gebiete, 1964, 3: 211-226 [19] de Acosta A. A new proof of the Hartman-Wintner law of the iterated logarithm. Ann Probab, 1983, 11(2): 270-276 [20] Shao QM, Su C.The law of the the iterated logarithm for negatively associated random variables. Stochastic Process Appl, 1999, 83(1): 139-148 [21] Zhang Y.The limit law of the iterated logarithm for linear processes. Statist Probab Lett, 2017, 122: 147-151 [22] Conus D, Joseph M, Khoshnevisan D.On the chaotic character of the stochastic heat equation, before the onset of intermitttency. Ann Probab, 2013, 41(3B): 2225-2260 [23] Federer H. Geometric Measure Theory.Berlin: Springer-Verlag, 1969 [24] Khoshnevisan D.Analysis of Stochastic Partial Differential Equations. Providence, RI: the American Mathematical Society, 2014 [25] Khoshnevisan D, Kim K, Xiao Y M.Intermittency and multifractality: a case study via parabolic stochastic PDEs. Ann Probab, 2017, 45(6A): 3697-3751 [26] Nualart D.The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006 [27] Dharmadhikari S W, Jogdeo K.Bounds on moments of certain random variables. Ann Math Statist, 1969, 40: 1506-1509 [28] Skorokhod A V.Studies in the Theory of Random Processes. Reading MA: Addison-Wesley, 1965 [29] Csörgő M, Révész P. How big are the increments of a Wiener process? Ann Probab, 1979, 7(4): 731-737 |
[1] | Xiuwei YIN. AN INTEGRATION BY PARTS FORMULA FOR STOCHASTIC HEAT EQUATIONS WITH FRACTIONAL NOISE* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 349-362. |
[2] | Nacira AGRAM, Saloua LABED, Bernt ØKSENDAL, Samia YAKHLEF. SINGULAR CONTROL OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1003-1017. |
[3] | Yong CHEN, Hongjuan ZHOU. PARAMETER ESTIMATION FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A GENERAL GAUSSIAN NOISE [J]. Acta mathematica scientia,Series B, 2021, 41(2): 573-595. |
[4] | Nguyen Tien DUNG, Ta Cong SON, Tran Manh CUONG, Nguyen Van TAN, Trinh Nhu QUYNH. DENSITY ESTIMATES FOR SOLUTIONS OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(4): 955-970. |
[5] | Heyu LI, Xia CHEN. PRECISE MOMENT ASYMPTOTICS FOR THE STOCHASTIC HEAT EQUATION OF A TIME-DERIVATIVE GAUSSIAN NOISE [J]. Acta mathematica scientia,Series B, 2019, 39(3): 629-644. |
[6] | Le CHEN, Kunwoo KIM. NONLINEAR STOCHASTIC HEAT EQUATION DRIVEN BY SPATIALLY COLORED NOISE: MOMENTS AND INTERMITTENCY [J]. Acta mathematica scientia,Series B, 2019, 39(3): 645-668. |
[7] | Yaozhong HU, Khoa LÊ. JOINT HÖLDER CONTINUITY OF PARABOLIC ANDERSON MODEL [J]. Acta mathematica scientia,Series B, 2019, 39(3): 764-780. |
[8] | Yaozhong HU, Yanghui LIU, Samy TINDEL. ON THE NECESSARY AND SUFFICIENT CONDITIONS TO SOLVE A HEAT EQUATION WITH GENERAL ADDITIVE GAUSSIAN NOISE [J]. Acta mathematica scientia,Series B, 2019, 39(3): 669-690. |
[9] | Raluca M BALAN, Lluís QUER-SARDANYONS, Jian SONG. HÖLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE [J]. Acta mathematica scientia,Series B, 2019, 39(3): 717-730. |
[10] | Yaozhong HU. SOME RECENT PROGRESS ON STOCHASTIC HEAT EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(3): 874-914. |
[11] | Yuecai HAN, Yifang SUN. SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 681-694. |
[12] | Junfeng LIU, Ciprian A. TUDOR. STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE: EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1545-1566. |
[13] | GAO Zhen-Long, HU Xiao-Yu. LIMIT THEOREMS FOR A GALTON-WATSON PROCESS IN THE I.I.D. RANDOM ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1193-1205. |
[14] | SHEN Guang-Jun, CHEN Chao, YAN Li-Tan. REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1860-1876. |
[15] | Lin Zhengyan; Li Degui. STRONG APPROXIMATION FOR MOVING AVERAGE PROCESSES UNDER DEPENDENCE ASSUMPTIONS [J]. Acta mathematica scientia,Series B, 2008, 28(1): 217-224. |
|