Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 736-750.doi: 10.1007/s10473-023-0220-6
Previous Articles Next Articles
Mingxuan Zhu1, Zaihong Jiang2,†
Received:
2021-11-07
Revised:
2022-04-05
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Zaihong Jiang, E-mail: About author:
Mingxuan Zhu, E-mail: mxzhu@qfnu.edu.cn
Supported by:
Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION*[J].Acta mathematica scientia,Series B, 2023, 43(2): 736-750.
[1] Brandolese L.Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces. Int Math Res Not, 2012, 22: 5161-5181 [2] Bressan A, Constantin A.Global conservative solutions of the Camassa-Holm equation. Arch Ration Mech Anal, 2007, 183: 215-239 [3] Bressan A, Constantin A.Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5: 1-27 [4] Camassa R, Holm D.An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661-1664 [5] Constantin A, Escher J.Well-posedness, global existence and blow-up phenomenon for a periodic quasilinear hyperbolic equation. Comm Pure Appl Math, 1998, 51: 475-504 [6] Constantin A, Escher J.Wave breaking for nonlinear nonlocal shallow water equations. Acta Math, 1998, 181: 229-243 [7] Constantin A, Gerdjikov V, Ivanov R.Inverse scattering transform for the Camassa-Holm equation. Inverse Problems, 2006, 22: 2197-2207 [8] Constantin A, Strauss W.Stability of peakons. Comm Pure Appl Math, 2000, 53: 603-610 [9] Gröchenig K.Weight functions in time-frequency analysis//Rodino L, Schulze B W, Wong M W. Pseudo- Differential Operators: Partial Differential Equations and Time-Frequency Analysis. Providence, RI: American Mathematical Society, 2007: 343-366 [10] Himonas A, Holliman C.The Cauchy problem for the Novikov equation. Nonlinearity, 2012, 25: 449-479 [11] Himonas A, Holmes J.Hölder continuity of the solution map for the Novikov equation. J Math Phys, 2013, 54: 061501 [12] Himonas A, Misiolek G, Ponce G, Zhou Y.Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Comm Math Phys, 2007, 271: 511-522 [13] Jiang Z, Ni L.Blow-up phenomenon for the integrable Novikov equation. J Math Anal Appl, 2012, 385: 551-558 [14] Jiang Z, Ni L, Zhou Y.Wave breaking of the Camassa-Holm equation. J Nonlinear Sci, 2012, 22: 235-245 [15] Jiang Z, Zhou Y, Zhu M.Large time behavior for the support of momentum density of the Camassa-Holm equation. J Math Phys, 2013, 54: 081503 [16] Kato T.Quasi-linear equations of evolution with application to partial differential equations//Everitt W N. Spectral Theory and Differential Equations. Berlin: Springer, 1975: 25-70 [17] Lai S.Global weak solutions to the Novikov equation. J Funct Anal, 2013, 265: 520-544 [18] Lenells J.Conservation laws of the Camassa-Holm equation. J Phys A, 2005, 38: 869-880 [19] Li Y, Olver P.Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation. J Differential Equations, 2000, 162: 27-63 [20] McKean H. Breakdown of a shallow water equation. Asian J Math, 1998, 2: 767-774 [21] Mi Y, Mu C.On the Cauchy problem for the modified Novikov equation with peakon solutions. J Differential Equations, 2013, 254: 961-982 [22] Ni L, Zhou Y.A new asymptotic behavior of solutions to the Camassa-Holm equation. Proc Amer Math Soc, 2012, 140: 607-614 [23] Ni L, Zhou Y.Well-posedness and persistence properties for the Novikov equation. J Differential Equations, 2011, 250: 3002-3021 [24] Novikov V.Generalisations of the Camassa-Home equation. J Phys A, 2009, 42: 342002 [25] Reyes E.Geometric integrability of the Camassa-Holm equation. Lett Math Phys, 2002, 59: 117-131 [26] Wu X L, Yin Z Y.Well-posedness and global existence for the Novikov equation. Ann Sc Norm Super Pisa Cl Sci, 2012, 11(3): 707-727 [27] Yan W, Li Y, Zhang Y.The Cauchy problem for the integrable Novikov equation. J Differential Equations, 2012, 253: 298-318 [28] Zhou S, Mu C, Wang L.Well-posedness, blow-up phenomena and global existence for the generalized b-equation with higher-order nonlinearities and weak dissipation. Discrete Contin Dyn Syst, 2014, 34: 843-867 [29] Zhou S, Mu C.The properties of solutions for a generalized b-family equation with peakons. J Nonlinear Sci, 2013, 23: 863-889 [30] Zhou S, Yang L, Mu C.Global dissipative solutions of the Novikov equation. Commun Math Sci, 2018, 16: 1615-1633 |
[1] | Boling Guo, Yamin Xiao. THE EXISTENCE OF WEAK SOLUTIONS AND PROPAGATION REGULARITY FOR A GENERALIZED KDV SYSTEM* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 942-958. |
[2] | Quansen Jiu, Lin Ma. GLOBAL WEAK SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES-LANDAU-LIFSHITZ-MAXWELL EQUATIONS FOR QUANTUM FLUIDS IN DIMENSION THREE* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 25-42. |
[3] | Wenjun WANG, Zhen CHENG. LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1921-1946. |
[4] | Xiaopan JIANG, Zhigang WU. POINTWISE SPACE-TIME BEHAVIOR OF A COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM IN DIMENSION THREE [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2113-2130. |
[5] | Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1058-1080. |
[6] | Jishan FAN, Fucai LI, Gen NAKAMURA. THE LOCAL WELL-POSEDNESS OF A CHEMOTAXIS-SHALLOW WATER SYSTEM WITH VACUUM [J]. Acta mathematica scientia,Series B, 2021, 41(1): 231-240. |
[7] | Jianjun HUANG, Zhenglu JIANG. GLOBAL EXISTENCE FOR THE RELATIVISTIC ENSKOG EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1335-1351. |
[8] | Lamia DJEBARA, Salem ABDELMALEK, Samir BENDOUKHA. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME COUPLED SYSTEMS VIA A LYAPUNOV FUNCTIONAL [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1538-1550. |
[9] | Zhensheng GAO, Yan LIANG, Zhong TAN. A GLOBAL EXISTENCE RESULT FOR KORTEWEG SYSTEM IN THE CRITICAL LP FRAMEWORK [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1639-1660. |
[10] | Hua CHEN, Huiyang XU. GLOBAL EXISTENCE, EXPONENTIAL DECAY AND BLOW-UP IN FINITE TIME FOR A CLASS OF FINITELY DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1290-1308. |
[11] | Yuzhu WANG, Naiwen TIAN. ON THE CAUCHY PROBLEM FOR IMBQ SYSTEM ARISING FROM DNA [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1136-1148. |
[12] | Yongqian ZHANG, Qin ZHAO. LARGE TIME BEHAVIOR OF SOLUTION TO NONLINEAR DIRAC EQUATION IN 1+1 DIMENSIONS [J]. Acta mathematica scientia,Series B, 2019, 39(2): 597-606. |
[13] | Yingshu ZHANG, Lang LI, Shaomei FANG. GLOBAL EXISTENCE AND POINTWISE ESTIMATES OF SOLUTIONS TO GENERALIZED KURAMOTO-SIVASHINSKY SYSTEM IN MULTI-DIMENSIONS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 180-194. |
[14] | Dexing KONG, Qi LIU. GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 745-755. |
[15] | Jing ZHANG, Yongqian ZHANG. INITIAL-BOUNDARY PROBLEM FOR THE 1-D EULER-BOLTZMANN EQUATIONS IN RADIATION HYDRODYNAMICS [J]. Acta mathematica scientia,Series B, 2018, 38(1): 34-56. |
|