[1] Borchers W, Miyakawa T. On stability of exterior stationary Navier-Stokes flows. Acta Math, 1995, 174:311-382 [2] Castillo R E, Rafeiro H. An Introductory Course in Lebesgue Spaces. Springer, 2015 [3] Duoc T V. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete Contin Dyn Syst A, 2018, 38:3387-3405 [4] Geissert M, Heck H, Hieber M. Lp-Theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle. J Reine Angew Math, 2006, 596:45-62 [5] Hieber M, Shibata Y. The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework. Math Z, 2010, 265:481-491 [6] Kobayashi T, Shibata Y. On the Oseen equation in the three dimensional exterior domains. Math Ann, 1998, 310:1-45 [7] Komatsu H. A general interpolation theorem of Marcinkiewics type. Tôhoku Math J, 1981, 33:383-393 [8] Kozono H, Shimizu S. Navier-Stokes equations with external forces in Lorentz spaces and its application to the self-similar solutions. J Math Anal Appl, 2018, 458:1693-1708 [9] Lunardi A. Interpolation Theory. Birkhäuser, 2009 [10] Shibata Y. On a C0 semigroup associated with a modified Oseen equation with rotating effect. Adv Math Fluid Mech, 2010:513-551 [11] Shibata Y. On the Oseen semigroup with rotating effect. Funct Anal Evol Equ, 2008:595-611 [12] Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam, New York, Oxford:North-Holland, 1978 |