[1] Aleksandrov A D. Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (Russian). Leningrad State Univ Annals[Uchenye Zapiski] Math Ser, 1939, 6:3-35 [2] Allen J S, Holm D D, Newberger P A. Toward an extended-geostrophic Euler-Poincaré model for mesoscale oceanographic flow//Norbury J, Roulstone I. Large-Scale Atmosphere-Ocean Dynamics 1:Analytical Methods and Numerical Models. Cambridge:Cambridge University Press, 2002:101-125 [3] Caffarelli L, Cabré X. Fully nonlinear elliptic equations. Amer Math Soc, Colloquium Publications, 1995, 43 [4] Gutiérrez C E. The Monge-Ampère equation. Boston:Birkhäuser, 2001 [5] Han Q. Nonlinear elliptic equations of the second order. Amer Math Soc, Graduate Studies in Mathematics 171, 2016 [6] Lions P-L. Sur les équations de Monge-Ampère. I. Manuscripta Math, 1983, 41:1-43 [7] Lions P-L. Sur les équations de Monge-Ampère. Arch Rational Mech Anal, 1985, 89:93-122 [8] Oliver M, Vasylkevych S. Generalized large-scale semigeostrophic approximations for the f-plane primitive equations. J Phys A:Math Theor, 2016, 49:184001 [9] O·zánski W. A generalised comparison principle for the Monge-Ampère equation and the pressure in 2D fluid flows. C R Math Acad Sci Paris, 2018, 356(2):198-206 [10] Salmon R. Large-scale semi-geostrophic equations for use in ocean circulation models. J Fluid Mech, 1996, 318:85-105 [11] Trudinger N S, Wang X-J. The Monge-Ampère equation and its geometric applications//Handbook of Geometric Analysis. No. 1. Adv Lect Math (ALM). Vol. 7. Somerville, MA:Int Press, 2008:467-524 |