[1] Burns D M, Krantz S G. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J Amer Math Soc, 1994, 7(3):661-667 [2] Chelst D. A generalized Schwarz lemma at the boundary. Proc Amer Math Soc, 2001, 123(11):3275-3278 [3] Franzoni T, Vesentini E. Holomorphic Maps and Invariant Distances. Amsterdan:North-Holland, 1980 [4] Garnett J B. Bounded Analytic Functions. New York:Academic press, 1981 [5] Huang X J. A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains. Can J Math, 1995, 47:405-420 [6] Krantz S G. The Schwarz lemma at the boundary. Complex Var Elliptic Equ, 2011, 56(5):455-468 [7] Liu T S, Tang X M. Schwarz lemma at the boundary of the Egg Domain Bp1,p2 in Cn. Canad Math Bull, 2015, 58(2):381-392 [8] Liu T S, Tang X M. Schwarz lemma at the boundary of strongly pseudoconvex domain in Cn. Math Ann, 2016, 366:655-666 [9] Osserman R. A sharp Schwarz inequality on the boundary. Proc Amer Math Soc, 2000, 128(12):3513-3517 [10] Pflug P, Zwonek W. The kobayashi metric for non-convex complex ellipsoids. Complex Var Theory Appl, 1996, 29(1):59-71 [11] Wang X P, Ren G B. Boundary Schwarz Lemma for Holomorphic Self-mappings of Strongly Pseudoconvex Domains. Complex Anal Oper Theory, 2017, 11:345-358 [12] Wu H. Normal families of holomorphic mappings. Acta Math, 1967, 119:193-233 |