Acta Mathematica Scientia ›› 2018, Vol. 38 ›› Issue (5): 1443-1467.
• Articles • Previous Articles Next Articles
Daomin CAO1, Shuangjie PENG2, Shuangjie PENG3
Received:
2017-12-21
Online:
2018-11-09
Published:
2018-11-09
Daomin CAO, Shuangjie PENG, Shuangjie PENG. REGULARIZATION OF PLANAR VORTICES FOR THE INCOMPRESSIBLE FLOW[J].Acta Mathematica Scientia, 2018, 38(5): 1443-1467.
[1] Ambrosetti A, Struwe M. Existence of steady vortex rings in an ideal fluid. Arch Rational Mech Anal, 1989, 108:97-109 [2] Amick C J, Fraenkel L E. The uniqueness of a family of steady vortex rings. Arch Rational Mech Anal, 1988, 100:207-241 [3] Amick C J, Turner R E L. A global branch of steady vortex rings. J Reine Angew Math, 1988, 384:1-23 [4] Arnold V I, Khesin B A. Topological Methods in Hydrodynamics. Applied Mathematical Sciences, Vol 125. New York:Springer, 1998 [5] Badiani T V. Existence of steady symmetric vortex pairs on a planar domain with an obstacle. Math Proc Cambridge Philos Soc, 1998, 123:365-384 [6] Bartsch T, Pistoia A, Weth T. N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler equations. Comm Math Phys, 2010, 297:653-686 [7] Berger M S, Fraenkel L E. Nonlinear desingularization in certain free-boundary problems. Comm Math Phys, 1980, 77:149-172 [8] Burton G R. Vortex rings in a cylinder and rearrangements. J Diff Equ, 1987, 70:333-348 [9] Burton G R. Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex. Acta Math, 1989, 163:291-309 [10] Caffarelli L, Friedman A. Asymptotic estimates for the plasma problem. Duke Math J, 1980, 47:705-742 [11] Cao D, Liu Z, Wei J. Regularization of point vortices for the Euler equation in dimension two. Arch Ration Mech Anal, 2014, 212:179-217 [12] Cao D, Peng S, Yan S. Multiplicity of solutions for the plasma problem in two dimensions. Adv Math, 2010, 225:2741-2785 [13] Cao D, Peng S, Yan S. Planar vortex patch problem in incompressible steady flow. Adv Math, 2015, 270:263-301 [14] Chang K C. The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm Pure Appl Math, 1980, 33:117-146 [15] Chang K C. Variational methods for nondifferentiable functionals and their applications to partial differential equations. J Math Anal Appl, 1981, 80:102-129 [16] Dancer E N, Yan S. The Lazer-McKenna conjecture and a free boundary problem in two dimensions. J London Math Soc, 2008, 78:639-662 [17] Fraenkel L E, Berger M S. A global theory of steady vortex rings in an ideal fluid. Acta Math, 1974, 132:13-51 [18] Fraenkel L E, Berger M S. A global theory of steady vortex rings in an ideal fluid. Bull Amer Math Soc, 1973, 79:806-810 [19] Flucher M, Wei J. Asymptotic shape and location of small cores in elliptic free-boundary problems. Math Z, 1998, 228:683-703 [20] Friedman A, Turkington B. Vortex rings:existence and asymptotic estimates. Trans Amer Math Soc, 1981, 268:1-37 [21] Li G, Yan S, Yang J. An elliptic problem related to planar vortex pairs. SIAM J Math Anal, 2005, 36:1444-1460 [22] Li Y, Peng S. Multiple solutions for an elliptic problem related to vortex pairs. J Diff Equ, 2011, 250:3448-3472 [23] Lin C. C. On the motion of vortices in two dimension-I. Existence of the Kirchhoff-Routh function. Proc Nat Acad Sci, 1941, 27:570-575 [24] Marchioro C, Pulvirenti M. Euler evolution for singular initial data and vortex theory. Comm Math Phys, 1983, 91:563-572 [25] Ni W-M. On the existence of global vortex rings. J Anal Math, 1980, 37:208-247 [26] Norbury J. Steady planar vortex pairs in an ideal fluid. Comm Pure Appl Math, 1975, 28:679-700 [27] Norbury J. A steady vortex ring close to Hill's spherical vortex. Proc Cambridge Philos Soc, 1972, 72:253-284 [28] Smets D, Van Schaftingen J. Desingulariation of vortices for the Euler equation. Arch Rational Mech Anal, 2010, 198:869-925 [29] Turkington B. On steady vortex flow in two dimensions, I. Comm Partial Diff Eqt, 1983, 8:999-1030 [30] Turkington B. On steady vortex flow in two dimensions, Ⅱ. Comm Partial Diff Equ, 1983, 8:1031-1071 [31] Yang J. Existence and asymptotic behavior in planar vortex theory. Math Models Methods Appl Sci, 1991, 1:461-475 |
[1] | Santhosh GEORGE, C. D. SREEDEEP. LAVRENTIEV'S REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 303-314. |
[2] | Ioannis K. ARGYROS, Santhosh GEORGE. ITERATIVE REGULARIZATION METHODS FOR NONLINEAR ILL-POSED OPERATOR EQUATIONS WITH M-ACCRETIVE MAPPINGS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1318-1324. |
[3] | DAI Jin-Jun, HE Ji-Han, LI Bi-Wen. NODAL BOUND STATES WITH CLUSTERED SPIKES FOR NONLINEAR SCHRÖDINGER EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1892-1906. |
[4] | GUO Juan, WANG Jin-Ping. CONVERGENCE ANALYSIS OF THE LOPING OS-EM ITERATIVE VERSION OF THE CIRCULAR RADON TRANSFORM [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1875-1884. |
[5] | YANG Fan, FU Chu-Li, LI Xiao-Xiao. IDENTIFYING AN UNKNOWN SOURCE IN SPACE-FRACTIONAL DIFFUSION EQUATION [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1012-1024. |
[6] | ZHANG Ling, ZUO Da-Feng. THE SUPER-BIHAMILTONIAN REDUCTION ON C∞(S1, OSP(1|2)) [J]. Acta mathematica scientia,Series B, 2014, 34(2): 537-545. |
[7] | GE Bin, XUE Xiao-Ping, ZHOU Qiang-Mei. EXISTENCE OF PERIODIC SOLUTIONS FOR A DIFFERENTIAL INCLUSION SYSTEMS INVOLVING THE p(t)-LAPLACIAN [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1786-1802. |
[8] | PENG Zi-Jia, LIU Yi-Liang. EXISTENCE RESULTS FOR A CLASS OF PSEUDOMONOTONE ELLIPTIC-PARABOLIC INCLUSIONS [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1709-1718. |
[9] | LIU Hong, SONG Yong-Zhong. ON A REGULARIZATION OF INDEX 2 DIFFERENTIAL-ALGEBRAIC EQUATIONS WITH PROPERLY STATED LEADING TERM [J]. Acta mathematica scientia,Series B, 2011, 31(2): 383-398. |
[10] | Huang Xiaowei, Wu Chuansheng, Wu Di. A FAST CONVERGENT METHOD OF ITERATED REGULARIZATION [J]. Acta mathematica scientia,Series B, 2009, 29(2): 341-348. |
[11] | Chen Huanyin. DIAGONAL REDUCTION OVER sπr IDEALS [J]. Acta mathematica scientia,Series B, 2008, 28(1): 179-184. |
[12] | Wang Ji'an; Li Jing; Liu Zhenhai. REGULARIZATION METHODS FOR NONLINEAR ILL-POSED PROBLEMS WITH ACCRETIVE OPERATORS [J]. Acta mathematica scientia,Series B, 2008, 28(1): 141-150. |
[13] | Zhong Tongde; Chen Luping. THE PERMUTATION FORMULA OF SINGULAR INTEGRALS WITH BOCHNER-MARTINELLI KERNEL ON STEIN MANIFOLDS [J]. Acta mathematica scientia,Series B, 2006, 26(4): 679-690. |
[14] |
WANG Yi-Ju, ZHOU Hou-Chun, WANG Chang-Yu.
A REGULARIZATION NEWTON METHOD FOR MIXED COMPLEMENTARITY PROBLEMS [J]. Acta mathematica scientia,Series B, 2004, 24(3): 376-384. |
[15] | CENG San-You, DING Li-Xin, KANG Li-Shan. A METHOD TO APPROACH OPTIMAL ESTORATION IN IMAGE RESTORATION ROBLEMS WITHOUT NOISE ENERGY NFORMATION [J]. Acta mathematica scientia,Series B, 2003, 23(4): 512-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|