Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (3): 898-914.doi: 10.1016/S0252-9602(18)30791-4
• Articles • Previous Articles Next Articles
Shibin SU, Xiaokui ZHAO
Received:
2017-05-05
Revised:
2017-10-20
Online:
2018-06-25
Published:
2018-06-25
Contact:
Xiaokui ZHAO
E-mail:zhaoxiaokui@126.com
Supported by:
Supported by NNSFC (11271306), the Natural Science Foundation of Fujian Province of China (2015J01023), and the Fundamental Research Funds for the Central Universities of Xiamen University (20720160012).
Shibin SU, Xiaokui ZHAO. GLOBAL WELLPOSEDNESS OF MAGNETOHYDRODYNAMICS SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY[J].Acta mathematica scientia,Series B, 2018, 38(3): 898-914.
[1] Alfvén H. Existence of electromagnetic-hydrodynamic waves. Nature, 1942, 150:405-406 [2] Amosov A A, Zlotnik A A. A difference scheme on a non-uniform mesh for the equations of one-dimensional magnetic gas dynamics. USSR Compu Maths Math Phys, 1990, 29(2):129-139 [3] Antontsev S N, Kazhikhov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications. Vol. 22. Amsterdam:North-Holland Publishing Co, ISBN 0-444-88382-7, 1990; translated from the Russian [4] Bittencourt J A. Fundamentals of Plasma Physics. 3rd. New York:Spinger-Verlag, 2004 [5] Boyd T J M, Sanderson J J. The Physics of Plasmas. Cambridge:Cambridge Univ Press, 2003 [6] Cabannes H. Theoretical Magnetofluiddynamics. New York:Academic Press, 1970 [7] Cercignani C, Illner R, Pulvirenti M. The Mathematical Theory of Dilute Gases//Appl Math Sci 106. New York:Springer-Verlag, 1994 [8] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford:Oxford Univ Press, 1961 [9] Chen G Q, Wang D. Global solution of nonlinear magnetohydrodynamics with large initial data. J Differential Equations, 2002, 182:344-376 [10] Chen G Q, Wang D. Existence and continuous dependence of large solutions for the magnetohydrodynamic equations. Z Angew Math Phys, 2003, 54:608-632 [11] Chapman S, Colwing T G. The Mathematical Theory of Nonuniform Gases. 3rd ed. Cambridge, UK:Cambridge Math Lib, Cambridge University Press, 1990 [12] Ducomet B, Feireisl E. The equations of magnetohydrodynamics:On the interaction between matter and radiation in the evolution of gaseous stars. Commun Math Phys, 2006, 266:595-629 [13] Fan J, Jiang S, Nakamura G. Vanishing shear viscosity limit in the magnetohydrodynamic equations. Commun Math Phys, 2007, 270:691-708 [14] Fan J, Yu W. Global variational solutions to the compressible magnetohydrodynamic equations. Nonlinear Anal, 2008, 69:3637-3660 [15] Fan J, Yu W. Strong solution to the compressible MHD equations with vacuum. Nonlinear Anal Real World Appl, 2009, 10:392-409 [16] Freidberg J P. Ideal Magneto-hydrodynamic Theory of Magnetic Fusion Systems//Rev Modern Physics Vol. 54, No 3. The American Physical Society, 1982 [17] Grad H. Asymptotic Theory of the Boltzmann Equation Ⅱ//Laurmann J A. Rarefied Gas Dynamics. 2ed. New York:Academic Press, 1963 [18] Gunderson R M. Linearized Analysis of One-Dimensional Magnetohydrodynamic Flows. Springer Tracts in Natural Philosophy. Vol. 1. Berlin. Gottingen. Heidelberg. New York:Springer-Verlag, 1964 [19] Hu X, Wang D. Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Commun Math Phys, 2008, 283:255-284 [20] Hu X, Wang D. Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations. J Differential Equations, 2008, 245:2176-2198 [21] Hu X, Wang D. Low mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J Math Anal, 2009, 41:1272-1294 [22] Hu X, Wang D. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch Ration Mech Anal, 2010, 197:203-238 [23] Huang F M, Zhao H J. On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rend Sem Mat Univ Padova, 2003, 109:283-305 [24] Iskenderova D A. An initial-boundary value problem for magnetogasdynamic equations with degenerate density. Differetial Eqns, 2000, 36:847-856 [25] Jiang S, Ju Q C, Li F C. Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun Math Phys, 2010, 297:371-400 [26] Kawashima S. Smooth global solutions for two-dimensional equations of electromagneto-fluid dynamics. Japan J Appl Math, 1984, 1:207-222 [27] Kawashima S, Okada M. Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc Japan Acad Ser A Math Sci, 1982, 58:384-387 [28] Kawashima S, Shizuta Y. Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid. Tsukuba J Math, 1986, 10:131-149 [29] Kawashima S, Shizuta Y. Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid Ⅱ. Proc Japan Acad Ser A, 1986, 62:181-184 [30] Kazhikhov A V. A priori estimates for the solutions of equations of magneticgasdynamics, boundary value problems for equations of mathematical physics. Krasnoyarsk, 1987. In Russian [31] Kazhikhov A V, Smagulov S S. Well-posedness and approximation methods for a model of magnetogasdy-namics. Izv Akad Nauk Kazakh SSR Ser Fiz -Mat, 19865:17-19 [32] Landau L D, Lifshitz E M, Pitaevskii L P. Electrodynamics of Continuous Media. 2nd ed. London:Butterworth-Heinemann, 1999 [33] Li H L, Xu X Y, Zhang J W. Global classsical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J Math Anal, 2013, 45:1356-1387 [34] Lin F, Zhang P. Global small solutions to an MHD-type system:the three-dimensional case. Comm Pure Appl Math, 2014, 67:531-580 [35] Lin F, Zhang T. Global small solutions to a complex fluid model in three dimensional. Arch Ration Mech Anal, 2015, 216:905-920 [36] Liu H, Yang T, Zhao H, Zou Q. One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data. SIAM J Math Anal, 2014, 46:2185-2228 [37] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heatconductive gases. J Math Kyoto Univ, 1980, 20:67-104 [38] Nishihara K, Yang T, Zhao H J. Nonlinear stability of strong rarefaction waves for compressible NavierStokes equations. SIAM J Math Anal, 2004, 35:1561-1597 [39] Umeda T, Kawashima S, Shizuta Y. On the decay of solutions to the linearized equations of electromagnetofluid dynamics. Japan J Appl Math, 1984, 1:435-457 [40] Vincenti W G, Kruger J C H. Introduction to Physical Gas Dynamics. New York:John Wiley and Sons, 1965 [41] Vol'pert A I, Khudiaev S I. On the Cauchy problem for composite systems of nonlinear equations. Mat Sb, 1972, 87:504-528 [42] Wang D. Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J Appl Math, 200, 63:1424-1441 [43] Xu L, Zhang P. Global small solutions to three-dimensional incompressible magnetohydrodynamical system. SIAM J Math Anal, 2015, 47:26-65 [44] Zhang J W, Jiang S, Xie F. Global weak solutions of an initial boundary value problem for screw pinches in plasma physics. Math Models Methods Appl Sci, 2009, 19:833-875 [45] Zhang J W, Zhao J N. Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics. Commun Math Sci, 2010, 8:835-850 [46] Zhang J W, Zhao X K. On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations. J Math Phys, 2017, 58:031504 |
[1] | Lin HE, Yongkai LIAO, Tao WANG, Huijiang ZHAO. ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series B, 2018, 38(5): 1515-1548. |
[2] | Zhonglin WU, Shu WANG. DIFFUSION VANISHING LIMIT OF THE NONLINEAR PIPE MAGNETOHYDRODYNAMIC FLOW WITH FIXED VISCOSITY [J]. Acta mathematica scientia,Series B, 2018, 38(2): 627-642. |
[3] | Zaiyun ZHANG, Jianhua HUANG, Mingbao SUN. ALMOST CONSERVATION LAWS AND GLOBAL ROUGH SOLUTIONS OF THE DEFOCUSING NONLINEAR WAVE EQUATION ON R2 [J]. Acta mathematica scientia,Series B, 2017, 37(2): 385-394. |
[4] | Zhaohui HUO. GLOBAL WELL-POSEDNESS IN ENERGY SPACE OF SMALL AMPLITUDE SOLUTIONS FOR KLEIN-GORDON-ZAKHAROV EQUATION IN THREE SPACE DIMENSION [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1117-1152. |
[5] | XIA Hong Qiang. GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE MASS-CRITICAL HARTREE EQUATION IN HIGH DIMENSIONS [J]. Acta mathematica scientia,Series B, 2015, 35(1): 255-274. |
[6] | CHEN Ming-Tao. GLOBAL WELL-POSEDNESS OF THE 2D INCOMPRESSIBLE MICROPOLAR FLUID FLOWS WITH PARTIAL VISCOSITY AND ANGULAR VISCOSITY [J]. Acta mathematica scientia,Series B, 2013, 33(4): 929-935. |
[7] | PU Xue-Ke, GUO Bo-Ling. GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1968-1984. |
[8] | LI Yong-Sheng, YANG Xin-Yu. GLOBAL WELL-POSEDNESS FOR A FIFTH-ORDER SHALLOW WATER EQUATION ON THE CIRCLE [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1303-1317. |
[9] | GUO Bai-Ling, HUANG Dai-Wen. ON THE 3D VISCOUS PRIMITIVE EQUATIONS OF THE LARGE-SCALE ATMOSPHERE [J]. Acta mathematica scientia,Series B, 2009, 29(4): 846-866. |
|