Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (2): 681-694.doi: 10.1016/S0252-9602(18)30774-4
• Articles • Previous Articles Next Articles
Yuecai HAN1, Yifang SUN2
Received:
2016-11-28
Revised:
2017-05-18
Online:
2018-04-25
Published:
2018-04-25
Contact:
Yifang SUN
E-mail:syf15@mails.jlu.edu.cn
Supported by:
This work was supported by NSFC grant (11371169), and China Automobile Industry Innovation and Development Joint Fund (U1564213).
Yuecai HAN, Yifang SUN. SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS[J].Acta mathematica scientia,Series B, 2018, 38(2): 681-694.
[1] Alòs E, Nualart D. Stochastic integration with respect to the fractional brownian motion. Stoch Stoch Rep, 2003, 75(3):129-152 [2] Bender C. Explicit solutions of a class of linear fractional BSDEs. Systems Control Lett, 2005, 54(7):671-680 [3] Bensoussan A. Lectures on Stochastic Control. Lecture Notes in Math. Berlin-New York:Springer, 1982 [4] Biagini F, Hu Y, Øksendal B, Sulem A. A stochastic maximum principle for processes driven by fractional brownian motion. Stochastic Process Appl, 2002, 100:233-253 [5] Bismut J M. Conjugate convex functions in optimal stochastic control. J Math Anal Appl, 1973, 44:384-404 [6] Bismut J M. An introductory approach to duality in optimal stochastic control. SIAM Rev, 1978, 20(1):62-78 [7] Diehl J, Friz P. Backward stochastic differential equations with rough drivers. Ann Probab, 2012, 40(4):1715-1758 [8] Di Nunno G, Øksendal B, Proske F. Malliavin calculus for Lévy processes with applications to finance. Berlin:Springer-Verlag, 2009 [9] Dai W, Heyde C C. Itô formula with respect to fractional brownian motion and its application. J Appl Math Stochastic Anal, 1996, 9(4):439-448 [10] Duncan T, Hu Y, Pasik-Duncan B. Stochasticcalculus for fractional brownian motion I. theory. SIAM J Control Optim, 2000, 38(2):582-612 [11] Fei W, Xia D, Zhang S. Solutions to BSDES driven by both standard and fractional brownian motions. Acta Math Appl Sin Engl Ser, 2013, 29(2):329-354 [12] Han Y, Hu Y, Song J. Maximum principle for general controlled systems driven by fractional brownian motions. Appl Math Optim, 2013, 67(2):279-322 [13] Haussmann U G. General necessary conditions for optimal control of stochastic system. Math Programm Stud, 1976, 6:34-48 [14] Hu Y. Integral transformations and anticipative calculus for fractional brownian motions. Mem Amer Math Soc, 2005, 175(825) [15] Hu Y, Øksendal B. Fractional white noise calculus and applications to finance. Infin Dimens Anal Quantum Probab Relat Top, 2003, 6(1):1-32 [16] Hu Y, Øksendal B. Partial information linear quadratic control for jump diffusions. SIAM J Control Optim, 2008, 47(4):1744-1761 [17] Hu Y. Peng S. Backward stochastic differential equation driven by fractional brownian motion. SIAM J Control Optim, 2009, 48(3):1675-1700 [18] Hu Y, Zhou X. Stochastic control for linear systems driven by fractional noises. SIAM J Control Optim, 2005, 43(6):2245-2277 [19] Kushner H J. Necessary conditions for continuous parameter stochastic optimization problems. SIAM J Control, 1972, 10:550-565 [20] Lin S. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep, 1995, 55(1):121-140 [21] Nualart D. The Malliavin calculus and related topics. Berlin:Springer, 2006 [22] Nualart D, Rascanu S. Differential equations driven by fractional brownian motion. Collect Math, 2002, 53(1):55-81 [23] Peng S. Backward stochastic differential equation nonlinear expectation and their applications//Proceedings of the International Congress of Mathematicians Hindustan Book Agency. India:New Delhi, 2010:393-432 [24] Peng S. A general stochastic maximum principle for optimal control problems. SIAM J Control Optim, 1990, 28(4):966-979 [25] Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation. Systems Control Lett, 1990, 14(1):55-61 [26] Wu L, Ding Y. Wavelet-based estimator for the Hurst parameters of fractional Brownian sheet. Acta Mathematica Scientia, 2017, 37B(1):205-222 |
[1] | Jun LIU, Dachun YANG, Wen YUAN. LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 1-33. |
[2] | Li ZHU. THE PLANCHEREL FORMULA FOR THE LINE BUNDLES ON SL(n+1, R)/S(GL(1, R)×GL(n, R)) [J]. Acta mathematica scientia,Series B, 2018, 38(1): 248-268. |
[3] | Junfeng LIU, Ciprian A. TUDOR. STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE: EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1545-1566. |
[4] | Yunxia WEI, Yanping CHEN. LEGENDRE SPECTRAL COLLOCATION METHOD FOR VOLTERRA-HAMMERSTEIN INTEGRAL EQUATION OF THE SECOND KIND [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1105-1114. |
[5] | Kamran MUSAZADEH, Hassan KHANDANI. SOME RESULTS ON CONTROLLED FRAMES IN HILBERT SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(3): 655-665. |
[6] | Zhendong LUO. A STABILIZED MIXED FINITE ELEMENT FORMULATION FOR THE NON-STATIONARY INCOMPRESSIBLE BOUSSINESQ EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 385-393. |
[7] | Chen ZHAO. HURWITZ-HODGE INTEGRAL IDENTITIES FROM THE ORBIFOLD MARIÑO-VAFA FORMULA [J]. Acta mathematica scientia,Series B, 2016, 36(1): 139-156. |
[8] | H. M. SRIVASTAVA, Minjie LUO, R. K. RAINA. A NEW INTEGRAL TRANSFORM AND ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1386-1400. |
[9] | Zhendong LUO. A STABILIZED CRANK-NICOLSON MIXED FINITE VOLUME ELEMENT FORMULATION FOR THE NON-STATIONARY PARABOLIZED NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1055-1066. |
[10] | Gonzalo ALDUNCIN. EVOLUTION FILTRATION PROBLEMS WITH SEAWATER INTRUSION: TWO-PHASE FLOW DUAL MIXED VARIATIONAL ANALYSIS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1142-1162. |
[11] | Zhengjie SHEN, Jinping WANG. THE IMPROVED RECONSTRUCTION METHOD FOR NONUNIFORM ATTENUATED SPECT DATA [J]. Acta mathematica scientia,Series B, 2015, 35(3): 527-538. |
[12] | Chen FEI, Weiyin FEI. OPTIMAL CONTROL OF MARKOVIAN SWITCHING SYSTEMS WITH APPLICATIONS TO PORTFOLIO DECISIONS UNDER INFLATION [J]. Acta mathematica scientia,Series B, 2015, 35(2): 439-458. |
[13] | Gaowei CAO, Kai HU, Xiaozhou YANG. FORMULA OF GLOBAL SMOOTH SOLUTION FOR NON-HOMOGENEOUS M-D CONSERVATION LAW WITH UNBOUNDED INITIAL VALUE [J]. Acta mathematica scientia,Series B, 2015, 35(2): 508-526. |
[14] | LUO Wei Yu,DU Jin Yuan. THE GAUSS–GREEN THEOREM IN CLIFFORD ANALYSIS AND ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(1): 235-254. |
[15] | H. M. SRIVASTAVA, M. I. QURESHI, Kaleem A. QURAISHI, Ashish ARORA. APPLICATIONS OF HYPERGEOMETRIC SUMMATION THEOREMS OF KUMMER AND DIXON INVOLVING DOUBLE SERIES [J]. Acta mathematica scientia,Series B, 2014, 34(3): 619-628. |
|