[1] Mujakovi? N. One-dimensional flow of a compressible viscous micropolar fluid:a local existence theorem. Glasnik Matemati?ki, 1998, 33(53):71-91
[2] Mujakovi? N. Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model:a local existence theorem. Annali Dell'Universita'Di Ferrara, 2007, 53(2):361-379
[3] Mujakovi? N. The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature. Nonlinear Anal-Real, 2014, 19:19-30
[4] Mujakovi? N, ?rnjari?-?ic N. Convergent finite difference scheme for 1d flow of compressible micropolar fluid. Int J Num Anal Model, 2015, 12:94-124
[5] Chen G Q, Kratka M. Global solutions to the Navier-Stokes equations for compressible heat-conducting flow with symmetry and free boundary. Comm Partial Diff Eqs, 2002, 27:907-943
[6] Chen G Q, Hoff D, Trivisa K. Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data. Comm Partial Diff Eqs, 2000, 25:2233-2257
[7] Lukaszewicz G. Micropolar Fluids. Boston:Birkhäuser, 1999
[8] Arnold V I. Ordinary Differential Equations. Cambridge:MIT Press, 1978
[9] Petrowski I G. Vorlesungen über die Theorie der gewöhnlichen Differentialgleichungen. Leipzig:Teubner, 1954
[10] Doutray R, Lions J I. Mathematical Analysis and Numerical Methods for Science and Technology, Vol 2. Berlin:Springer-Verlag, 1988
[11] Doutray R, Lions J I. Mathematical Analysis and Numerical Methods for Science and Technology, Vol 5. Berlin:Springer-Verlag, 1992
[12] Antonsev S V, Kazhinkhov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and its Applications, Vol 22. Amsterdam:North-Holland Publ Co, 1990 |