{
[1]}
Ambrosetti A, Cerami G, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonmous
equations on ${\Bbb R}^N$. J Funct Anal, 2008, {\bf 254}: 2816--2845
\REF{
[2]} Ambrosetti A, Malchiodi A. Peturbation Methods and Semilinear Elliptic Problems on ${\Bbb R}^N$.
Prog Math, Vol 204. Berlin: Birkh\"auser, 2006
\REF{
[3]} Busca J, Sirakov B. Symmetry results for semilinear elliptic systems in the whole space.
J Diff Equs, 2000, {\bf 163}: 41--56
\REF{
[4]} Cerami G. Some nonlinear elliptic problems in unbounded domains.
Milan J Math, 2006, {\bf 74}: 47--77
\REF{
[5]} Kong M K. Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in ${\Bbb R}^N$.
Arch Rat Mech Anal, 1989, {\bf 105}: 243--266
\REF{
[6]}Kolokolnikov T, Wei J. On ring-like solutions for the Gray-Scott model:
existence, instability and self-replicating rings.
European J Appl Math, 2005, {\bf 16}: 201--237
\REF{
[7]}Lin T -C, Wei J.
Spikes in two-component systems of nonlinear Schr\"{o}dinger equations with trapping potentials.
J Diff Equas, 2006, {\bf 229}: 538--569
\REF{
[8]}Lin T -C, Wei J. Spikes in two coulped nonlinear Schr\"{o}dinger equations.
Ann Inst H Poincar\'{e} Anal Nonlin\'{e}aire, 2005, {\bf 22}: 403--439
\REF{
[9]} Lions P L. The concentration-compactness principle in the calculus of variations. The
locally compact case, Part 1. Ann Inst H Poincar\'{e} Anal Nonlin\'{e}aire, 1984, {\bf 1}: 109--145
\REF{
[10]}Lions P L. The concentration-compactness principle in the calculus of variations. The
locally compact case, Part 2. Ann Inst H Poincar\'{e} Anal Nonlin\'{e}aire, 1984, {\bf 1}: 223--283
\REF{
[11]}Struwe M. Variational Methods: Applications to Nonlinear Partial Differential Equations and
Hamiltonian Systems. Berlin: Springer-Verlag, 2000
\REF{
[12]}Willem M. Minimax Theorems. Boston, Basel, Berlin: Birkhauser, 1996
\REF{
[13]}Bartsch T, Wang Z -Q, Wei J. Bound states for a coupled schrodinger
system. J Fixed Point Theory Appl, 2007, {\bf 2}: 353--367