[1]Arslan K, C.elik Y, Deszcz R, Ezentas.R. On the equivalence of Ricci-semisymmetry and semisymmetry.Colloq Math, 1998, 76: 279-294
[2]Arslan K, Deszcz R, Ezentas.R. On a certain subclass of hypersurfaces in semi-Euclidean spaces. Soochow J Mathm 1999, 25: 221-234
[3]Arslan K, Deszcz R, Ezentas.R, Hotlo´s M. On a certain subclass of conformally flat manifolds. Bull Inst Math Acad Sinica, 1998, 26: 283-299
[4]Belkhelfa M, Deszcz R, G logowska M, Kowalczyk D, Verstraelen L. A review on pseudosymmetry type manifolds. Proc Banach Center, to appear
[5]Boeckx E, Kowalski O, Vanhecke L. Riemannian Manifolds of Conullity Two. Singapore: World SciPublishing, 1996
[6]Deprez J. Semi-parallel hypersurfaces. Rend Sem Mat Univ Politechn Torino, 1986, 44: 303-316
[7]Deszcz R. On Ricci-pseuodsymmetric warped products. Demonstratio Math, 1989, 22: 1053-1065
[8]Deszcz R. On pseudosymmetric spaces. Bull Soc Belg Math, 1992, 44A: 1-34
[9]Deszcz R. On certain classes of hypersurfaces in spaces of constant curvature. In: Geometry and Topology of Submanifolds, VIII. River Edge, NJ: World Sci Publishing, 1996. 101-110
[10]Deszcz R. Pseudosymmetric hypersurfaces in spaces of constant curvature. Tensor N S, 1997, 58: 253-269
[11]Deszcz R. On the equivalence of Ricci-semisymmetry and semisymmetry. Dept Math Agricultural Univ Wroc law, Ser A, Theory and Methods, Report No 64, 1998
[12]Deszcz R, G logowska M. Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces. Colloq Math,in print
[13]Deszcz R, G logowska M. Some nonsemisymmetric Ricci-semisymmetric warped product hypersurfaces.Dept Math Agricultural Univ Wroc law, Ser A, Theory and Methods, Report No 90, 2000
[14]Deszcz R, G logowska M, Hotlo´s M, Kowalczyk D, Verstraelen L. A review on pseudosymmetry type manifolds. Dept Math, Agricultural Univ Wroc law, Ser A, Theory and Methods, Report No 84, 2000
[15]Deszcz R, G logowska M, Hotlo´s M, S.ent¨urk Z. On certain quasi-Einstein semisymmetric hypersurfaces.Annales Univ Sci Budapest, 1998, 41: 151-164
[16]Deszcz R, G logowska M, Hotlo´s M, Verstraelen L. On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian space forms. Dept Math, Agricultural Univ Wroc law, Ser A, Theory and Methods, Report No 99, 2001
[17]Deszcz R, G logowska M, Kowalczyk D. A review of results on semisymmetric manifolds. Dept Math,Agricultural Univ Wroc law, Ser A, Theory and Methods, Report No 76, 2000
[18]Deszcz R, Hotlo´s M. On a certain subclass of pseudosymmetric manifolds. Publ Math Debrecen, 1998, 53:29-48by the asymptotic method. Asymptotic analysis, 2000, 22:129-148
[19]Deszcz R, Hotlo´s M, S.enturk Z. On the equivalence of the Ricci-pseudosymmetry and pseudosymmetry.Colloq Math, 1999, 79: 211-227
[20]Deszcz R, Hotlo´s M, S.ent¨urk Z. Quasi-Einstein hypersurfaces in semi-Riemannian space forms. Colloq Math, 2001, 89: 81-97
[21]Deszcz R, Hotlo´s M, S.ent¨urk Z. On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces. Soochow J Math, 2001, 21: 375-389
[22]Deszcz R, Hotlo´s M, S.ent¨urk Z. A review of results on quasi-Einstein hypersurfaces in semi-Euclidean spaces. Dept Math, Agricultural Univ Wroc law, Ser A, Theory and Methods, Report No 78, 2000
[23]Deszcz R, Verstraelen L. Hypersurfaces of semi-Riemannian conformally flat manifolds. In: Geometry and Topology of Submanifolds, III. River Edge, NJ: World Sci Publishing, 1991. 131-147
[24]eszcz R,Verstraelen L, Yaprak S.Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature.Bull Inst Math Acad Sinica,1994,22: 167-179
[25]Deszcz R, Verstraelen L, Yaprak S.. Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat manifolds. In: Geometry and Topology of Submanifolds. IX. River Edge, NJ: World Sci Publishing, 1999.108-117
[26]Deszcz R, Yaprak S.. Curvature properties of Cartan hypersurfaces. Colloq Math, 1992, 67: 91-98
[27]G logowska M. On some class of semisymmetric manifolds. Dept Math, Agricultural Univ Wroc law, Ser A,Theory and Methods, Report No 73, 1999
[28]G logowska M. On a curvature characterization of Ricci-semisymmetric hypersurfaces. Dept Math Agri-cultural Univ Wroc law, Ser A, Theory and Methods, Report No 97, 2000
[29]Kowalczyk D. On semi-Riemannian manifolds satisfying some curvature conditions. Soochow J Math,2001, 27: 445-461
[30]Mirzoyan V A. Cones over Einstein spaces. Izv Nat Akad Nauk Armenia, 1998, 33: 40-46
[31]Mirzoyan V A. Classification of Ric-semiparallel hypersurfaces in Euclidean spaces. Sbornik Math, 2000,191: 1323-1338
[32]Murathan C, Arslan K, Deszcz R, Ezentas.R, ¨Ozg¨ur C. On some class of hypersurfaces of semi-Euclidean spaces. Publ Math Debrecen, 2001, 58: 587-604
[33]Ryan P J. A class of complex hypersurfaces. Colloq Math, 1972, 26: 175-182
[34]Nomizu K. On hypersurfaces satisfying a certain condition on the curvature tensor. Tˆohoku Math J, 1968,20: 46-59
[35]Szab´o Z I. Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version. J Differential Geom, 1982, 17: 531-582
[36]Takagi H. An example of a Riemannian manifold satisfying R(X, Y ) · R = 0 but not ∇R = 0. Tˆohoku Math J, 1972, 24: 105-108
[37]Verstraelen L. Comments on pseudo-symmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. River Edge, NJ: World Sci Publishing, 1994. 199-209
|