[1] Bae H. Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations. Proc Amer Math Soc, 2015, 143(7): 2887-2892 [2] Benameur J. Long time decay to the Lei-Lin solution of 3D Navier-Stokes equations. J Math Anal Appl, 2015, 422: 424-434 [3] Benameur J, Bennaceur M. Large time behaviour of solutions to the 3D-NSE in $\chi^{\delta}$ spaces. J Math Anal Appl, 2020, 482: 123566 [4] Catania D. Finite dimensional global attractor for 3D MHD-$\alpha$ models: a comparison. J Math Fluid Mech, 2012, 14: 95-115 [5] Chen S Y, Foias C, Holm D D, et al. Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys Rev Lett, 1998, 81(24): 5338-5341 [6] Du Y, Qiu H, Yao Z. Global well-posedness of the Cauchy problem for certain magnetohydrodynamic-$\alpha$ models. Math Meth Appl Sci, 2010, 33(13): 1545-1557 [7] Fan J, Ozawa T. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic Related Models, 2009, 2: 293-305 [8] Fan J, Ozawa T. Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms. J Math Fluid Mech, 2010, 12: 306-319 [9] Holm D D. Average Lagrangians and the mean effects of fluctuations in ideal fluid dynamics. Physica D, 2002, 170: 253-286 [10] Jasmine S L, Titi E S. Analytical study of certain magnetodrodynamic-$\alpha$ models. J Math Phy, 2007, 48: 065504 [11] Lei Z, Lin F. Global mild solutions of Navier-Stokes equations. Comm Pure Appl Math, 2011, 64: 1297-1304 [12] Wang Y. Asymptotic decay of solutions to 3D MHD equations. Nonliear Anal: TMA, 2016, 132: 115-125 [13] Wang Y, Wang K. Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal: RWA, 2014, 17: 245-251 [14] Xiao Y, Yuan B, Zhang Q. Temporal decay estimate of solutions to 3D generalized magnetohydrodynamic system. Appl Math Lett, 2019, 98: 108-113 [15] Xu X, Ye Z. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Comm Pure Appl Anal, 2015, 14: 585-595 [16] Yamazaki K. A remark on the two-dimensional magnetohydrodynamics-alpha system. J Math Fluid Mech, 2016, 18(3): 609-623 [17] Ye Z. Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann Mat Pura Appl, 2016, 195: 1111-1121 [18] Ye Z, Xu X. Global regularity of 3D generalized incompressible magnetohydrodynamic-$\alpha$ model. Appl Math Lett, 2014, 35: 1-6 [19] Ye Z, Zhao X. Global well-posedness of the generalized magnetohydrodynamic equations. Z Angew Math Phys, 2018, 69: Art 126 [20] Yu Y, Li K. Existence of solutions for the MHD-Leray-alpha equations and their relations to the MHD equations. J Math Anal Appl, 2007, 329: 298-326 [21] Zhao J, Zhu M. Global regularity for the incompressible MHD-$\alpha$ system with fractional diffusion. Appl Math Lett, 2014, 29: 26-29 [22] Zhao X, Cao J. Global well-posedness of solutions for magnetohydrodynamics-$\alpha$ model in $\mathbb{R}^3$. Appl Math Lett2017, 74: 134-139 [23] Zhou Y, Fan J.Global well-posedness for two modified-Leray-$\alpha$-MHD models with partial viscous terms. Math Methods Appl Sci, 33(7): 856-862 [24] Zhou Y, Fan J. On the Cauchy problem for a Leray-$\alpha$-MHD model. Nonlinear Anal: RWA, 2011, 12: 648-657 |