Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (3): 973-983.doi: 10.1007/s10473-024-0311-z
Previous Articles Next Articles
Cuntao xiao1, Hua qiu2,*, Zheng-an yao3
Received:
2022-07-08
Revised:
2022-11-25
Online:
2024-06-25
Published:
2024-05-21
Contact:
*Hua qiu, E-mail:About author:
Cuntao xiao,E-mail:xiaocuntao@gdut.edu.cn; Zheng-an yao ,E-mail:mcsyao@mail.sysu.edu.cn
Supported by:
CLC Number:
Cuntao xiao, Hua qiu, Zheng-an yao. THE GLOBAL EXISTENCE AND ANALYTICITY OF A MILD SOLUTION TO THE 3D REGULARIZED MHD EQUATIONS[J].Acta mathematica scientia,Series B, 2024, 44(3): 973-983.
[1] Bae H. Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations. Proc Amer Math Soc, 2015, 143(7): 2887-2892 [2] Benameur J. Long time decay to the Lei-Lin solution of 3D Navier-Stokes equations. J Math Anal Appl, 2015, 422: 424-434 [3] Benameur J, Bennaceur M. Large time behaviour of solutions to the 3D-NSE in χδ spaces. J Math Anal Appl, 2020, 482: 123566 [4] Catania D. Finite dimensional global attractor for 3D MHD-α models: a comparison. J Math Fluid Mech, 2012, 14: 95-115 [5] Chen S Y, Foias C, Holm D D, et al. Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys Rev Lett, 1998, 81(24): 5338-5341 [6] Du Y, Qiu H, Yao Z. Global well-posedness of the Cauchy problem for certain magnetohydrodynamic-α models. Math Meth Appl Sci, 2010, 33(13): 1545-1557 [7] Fan J, Ozawa T. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-α-MHD model. Kinetic Related Models, 2009, 2: 293-305 [8] Fan J, Ozawa T. Global Cauchy problem for the 2-D magnetohydrodynamic-α models with partial viscous terms. J Math Fluid Mech, 2010, 12: 306-319 [9] Holm D D. Average Lagrangians and the mean effects of fluctuations in ideal fluid dynamics. Physica D, 2002, 170: 253-286 [10] Jasmine S L, Titi E S. Analytical study of certain magnetodrodynamic-α models. J Math Phy, 2007, 48: 065504 [11] Lei Z, Lin F. Global mild solutions of Navier-Stokes equations. Comm Pure Appl Math, 2011, 64: 1297-1304 [12] Wang Y. Asymptotic decay of solutions to 3D MHD equations. Nonliear Anal: TMA, 2016, 132: 115-125 [13] Wang Y, Wang K. Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal: RWA, 2014, 17: 245-251 [14] Xiao Y, Yuan B, Zhang Q. Temporal decay estimate of solutions to 3D generalized magnetohydrodynamic system. Appl Math Lett, 2019, 98: 108-113 [15] Xu X, Ye Z. Note on global regularity of 3D generalized magnetohydrodynamic-α model with zero diffusivity. Comm Pure Appl Anal, 2015, 14: 585-595 [16] Yamazaki K. A remark on the two-dimensional magnetohydrodynamics-alpha system. J Math Fluid Mech, 2016, 18(3): 609-623 [17] Ye Z. Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann Mat Pura Appl, 2016, 195: 1111-1121 [18] Ye Z, Xu X. Global regularity of 3D generalized incompressible magnetohydrodynamic-α model. Appl Math Lett, 2014, 35: 1-6 [19] Ye Z, Zhao X. Global well-posedness of the generalized magnetohydrodynamic equations. Z Angew Math Phys, 2018, 69: Art 126 [20] Yu Y, Li K. Existence of solutions for the MHD-Leray-alpha equations and their relations to the MHD equations. J Math Anal Appl, 2007, 329: 298-326 [21] Zhao J, Zhu M. Global regularity for the incompressible MHD-α system with fractional diffusion. Appl Math Lett, 2014, 29: 26-29 [22] Zhao X, Cao J. Global well-posedness of solutions for magnetohydrodynamics-α model in R3. Appl Math Lett2017, 74: 134-139 [23] Zhou Y, Fan J.Global well-posedness for two modified-Leray-α-MHD models with partial viscous terms. Math Methods Appl Sci, 33(7): 856-862 [24] Zhou Y, Fan J. On the Cauchy problem for a Leray-α-MHD model. Nonlinear Anal: RWA, 2011, 12: 648-657 |
[1] | Ying Wang, Yanjing Qiu, Qingping Yin. THE RADIAL SYMMETRY OF POSITIVE SOLUTIONS FOR SEMILINEAR PROBLEMS INVOLVING WEIGHTED FRACTIONAL LAPLACIANS [J]. Acta mathematica scientia,Series B, 2024, 44(3): 1020-1035. |
[2] | Han Wang, Yinghui Zhang. THE OPTIMAL LARGE TIME BEHAVIOR OF 3D QUASILINEAR HYPERBOLIC EQUATIONS WITH NONLINEAR DAMPING [J]. Acta mathematica scientia,Series B, 2024, 44(3): 1064-1095. |
[3] | Zhenhua Guo, Xueyao Zhang. INTERFACE BEHAVIOR AND DECAY RATES OF COMPRESSIBLE NAVIER-STOKES SYSTEM WITH DENSITY-DEPENDENT VISCOSITY AND A VACUUM* [J]. Acta mathematica scientia,Series B, 2024, 44(1): 247-274. |
[4] | Meiqing XU. ON A SUPER POLYHARMONIC PROPERTY OF A HIGHER-ORDER FRACTIONAL LAPLACIAN* [J]. Acta mathematica scientia,Series B, 2023, 43(6): 2589-2596. |
[5] | Mingjuan Chen, Shuai Zhang. ALMOST SURE GLOBAL WELL-POSEDNESS FOR THE FOURTH-ORDER NONLINEAR SCHRÖDINGER EQUATION WITH LARGE INITIAL DATA* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2215-2233. |
[6] | Léo Glangetas, Van-Sang Ngo, El Mehdi Said. HYDROSTATIC LIMIT OF THE NAVIER-STOKES-ALPHA MODEL* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 1945-1980. |
[7] | Yuhui Chen, Qinghe Yao, Minling Li, Zheng-an Yao. GLOBAL WELL-POSEDNESS AND OPTIMAL TIME DECAY RATES FOR THE GENERALIZED PHAN-THIEN-TANNER MODEL IN R3* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1301-1322. |
[8] | Huafei DI, Weijie Rong. THE REGULARIZED SOLUTION APPROXIMATION OF FORWARD/BACKWARD PROBLEMS FOR A FRACTIONAL PSEUDO-PARABOLIC EQUATION WITH RANDOM NOISE* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 324-348. |
[9] | Weixi LI, Rui XU, Tong YANG. GLOBAL WELL-POSEDNESS OF A PRANDTL MODEL FROM MHD IN GEVREY FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2343-2366. |
[10] | Changxing MIAO, Junyong ZHANG, Jiqiang ZHENG. A NONLINEAR SCHRÖDINGER EQUATION WITH COULOMB POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2230-2256. |
[11] | Chao Jiang, Zuhan Liu, Ling Zhou. BLOW-UP IN A FRACTIONAL LAPLACIAN MUTUALISTIC MODEL WITH NEUMANN BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1809-1816. |
[12] | Qingyou He, Jiawei Sun. LARGE TIME BEHAVIOR OF THE 1D ISENTROPIC NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1843-1874. |
[13] | Wenjun WANG, Zhen CHENG. LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1921-1946. |
[14] | Jinlu LI, Zhaoyang YIN, Xiaoping ZHAI. GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2131-2148. |
[15] | Xueting Jin, Yuelong Xiao, Huan Yu. GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1293-1309. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 1
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|