[1] Nashed M Z, Votruba G F. A unified approch to generalized inverses of linear operators:II, Extremal and proximal properties. Bull Amer Math Soc, 1974, 80(5):831-835 [2] Nashed M Z. Generalized Inverses and Applications. New York/London:Academic Press, 1976 [3] Ben-Israel A, Greville T N E. Generalized Inverse:Theory and Applications. New York:John Wiley, 1974 [4] Wei Y M, Ding J. Representations for Moore-Penrosse inversr in Hilbert spaces. Appl Math Lett, 2001, 14:599-604 [5] Wei Y M, Wang D K. Condition number and perturbation of the weighted Moore-Penrose inverse and weighted linear least squares problem. Appl Math Comput, 2003, 145:45-58 [6] Wang H, Wang Y W. Metric generalized inverse of linear operator in Banach spaces. Chin Ann Math, 2003, 24B(4):509-520 [7] Wang Y W. The Generalized Inverse Theorem and Its Application for Operator in Banach Spaces(in Chinese). Beijing:Science Press, 2005 [8] Hudzik H, Wang Y W, Zheng W J. Criteria for the Metric Generalized Inverse and its Selections in Banach Spaces. Set-Valued Anal, 2008, 16:51-65 [9] Ma H F, Hudzik H, Wang Y W. Continuous homogeneous seletions of set-valued metric generalized inverse of linear operators in Banach spaces. Acta Mathematica Sinica English, 2012, 28(1):45-56 [10] Karatzas I, Shreve S. Methods of Mathematical Finance. New York:Springer-Verlag, 1998 [11] Wang G R, Wei Y M, Qiao S Z. Generalized Inverse:Theory and Computation. Beijing/New York:Science Press, 2004 [12] Deutsch F. Linear seletions for the metric projection. J Funct Anal, 1982, 49:269-292 |