Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (4): 1607-1620.doi: 10.1007/s10473-022-0418-z

• Articles • Previous Articles     Next Articles

ON THE DIMENSION OF THE DIVERGENCE SET OF THE OSTROVSKY EQUATION

Yajuan ZHAO1, Yongsheng LI2, Wei YAN3, Xiangqian YAN3   

  1. 1. Zhengzhou University, Zhengzhou, 450001, China;
    2. South China University of Technology, Guangzhou, 510640, China;
    3. Henan Normal University, Xinxiang, 453007, China
  • Received:2020-04-15 Revised:2021-06-04 Online:2022-08-25 Published:2022-08-23
  • Contact: Yajuan ZHAO,E-mail:zhaoyj_91@zzu.edu.cn E-mail:zhaoyj_91@zzu.edu.cn
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (11571118, 11401180 and 11971356).

Abstract: We investigate the refined Carleson's problem of the free Ostrovsky equation \begin{equation*} \left\{ \begin{aligned} & u_t+\partial_x^3u+\partial_x^{-1}u=0,\\ & u(x,0)=f(x), \end{aligned} \right. \end{equation*} where $(x,t)\in\mathbb{R}\times\mathbb{R}$ and $f\in H^s(\mathbb{R})$. We illustrate the Hausdorff dimension of the divergence set for the Ostrovsky equation \begin{equation*} \alpha_{1,U}(s)=1-2s,\quad \frac{1}{4}\leq s\leq\frac{1}{2}. \end{equation*}

Key words: Free Ostrovsky equation, Hausdorff dimension, divergence set

CLC Number: 

  • 35Q53
Trendmd