Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (4): 1585-1606.doi: 10.1007/s10473-022-0417-0
• Articles • Previous Articles Next Articles
Bingyuan HUANG1, Shijin DING2, Riqing WU3
Received:
2021-03-02
Online:
2022-08-25
Published:
2022-08-23
Contact:
Shijin DING,E-mail:dingsj@scnu.edu.cn
E-mail:dingsj@scnu.edu.cn
Supported by:
CLC Number:
Bingyuan HUANG, Shijin DING, Riqing WU. CLASSICAL SOLUTIONS OF THE 3D COMPRESSIBLE FLUID-PARTICLE SYSTEM WITH A MAGNETIC FIELD[J].Acta mathematica scientia,Series B, 2022, 42(4): 1585-1606.
[1] Ballew J. Mathematical Topics in Fluid-Particle Interaction[D]. USA:University of Maryland, 2014 [2] Ballew J, Trivisa K, Suitable weak solutions and low stratifcation singular limit for a fluid particle interaction model. Quart Appl Math, 2012, 70:469-494 [3] Ballew J, Trivisa K. Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system. Nonlinear Analysis, 2013, 91(12):1-19 [4] Boldrini J L, Rojas-Medar M A, Fernández-Cara E, Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids. J Math Pures Appl, 2003, 82:1499-1525 [5] Carrillo J A, Goudon T, Stability and asymptotic analysis of a fluid-particle interaction model. Commun Partial Differ Equ, 2006, 31:1349-1379 [6] Carrillo J A, Karper T, Trivisa K, On the dynamics of a fluid-particle interaction model:the bubbling regime. Nonlinear Anal, 2011, 74:2778-2801 [7] Chen R M, Hu J L, Wang D H, Global weak solutions to the magnetohydrodynamic and Vlasov equations. J Math Fluid Mech, 2016, 18:343-360 [8] Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluid. J Math Pures Appl, 2004, 83(2):243-275 [9] Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscript Math, 2006, 120(1):91-129 [10] Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differ Eqs, 2003, 190(2):504-523 [11] Chen Y S, Ding S J, Wang W J. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete Cont Dyn Serious A, 2016, 36(10):5287-5307 [12] Ding S J, Huang B Y, Hou X Y. Strong solutions to a fluid-particle interaction model with magnetic field in $\mathbb{R}$2. Discrete Cont Dyn Serious B, 2022, 27(1):277-300 [13] Ding S J, Huang B Y, Li Q R. Global existence and decay estimates for the classical solutions to a compressible fluid-particle interaction model. Acta Mathematica Scientia, 2019, 39B(6):1525-1537 [14] Ding S J, Huang B Y, Lu Y B. Blowup criterion for the compressible fluid-particle interaction model in 3D with vacuum. Acta Mathematica Scientia, 2016, 36B(4):1030-1048 [15] Ding S J, Huang B Y, Wen H Y. Global well-posedness of classical solutions to a fluid-particle interaction model in $\mathbb{R}$3. J Differ Eqs, 2017, 263(12):8666-8717 [16] Fang D Y, Zi R Z, Zhang T. Global classical large solutions to a 1D fluid-particle interaction model:The bubbling regime. J Math Phys, 2012, 53(3):177-193 [17] Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford:Oxford Univ Press, 2004 [18] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes equations. New York:Springer-Verlag, 1994 [19] Huang B K, Liu L Q, Zhang L, On the existence of global strong solutions to 2D compressible Navier-Stokes-Smoluchowski equations with large initial data. Nonlinear Analysis:Real World Applications, 2019, 49:169-195 [20] Huang B Y, Ding S J, Wen H Y. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete Contin Dyn Syst S, 2016, 9(6):1717-1752 [21] Huang B Y, Huang J R, Wen H Y. Low Mach number limit of the compressible Navier-Stokes-Smoluchowski equations in multi-dimensions. J. Math Phys, 2019, 60(6):061501 [22] Huang J R, Huang B Y, Wu Y Q, Blowup Mechanism for a Fluid-Particle Interaction System in $\mathbb{R}$3. Acta Appl Math, 2020, 170:185-202 [23] Huang X D, Li J, Xin Z P, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65:549-585 [24] Hoff D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303(1):169-181 [25] Hoff D, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J Differ Eqs, 1995, 120:215-254 [26] Hoff D, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids. Arch Rational Mech Anal, 1997, 139:303-354 [27] Itaya N, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Kodai Math Sem Rep, 1971, 23:60-120 [28] Jiang S, Zhang P, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm Math Phys, 2001, 215:559-581 [29] Jiang P, Global well-posedness and large time behavior of classical solutions to the Vlasov-Fokker-Planck and magnetohydrodynamics equations. J Differ Eqs, 2017, 262:2961-2986 [30] Kazhikhov A V, Shelukhi V V, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41:282-291 [31] Li J, Xin Z P. Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier-Stokes Equations with Vacuum. Annals of PDE, 2019, 5(1):7 [32] Li J, Zhang J W, Zhao J N. On the global motion of viscous compressible barotropic flows subject to large external potential forces and vacuum. SIAM J Math Anal, 2015, 47(2):1121-1153 [33] Lions P L. Mathematical Topics in Fluid Mechanics. Vol II. Compressible Models. Oxford:Clarendon Press, 1998 [34] Luo Z. Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum. Commun Math Sci, 2012, 10(2):527-554 [35] Matsumura A, Nishida T, The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67-104 [36] Nash J, Le problème de Cauchy pour les equations différentielles d'un fluide général. Bull Soc Math France, 1962, 90:487-497 [37] Serrin J, On the uniqueness of compressible fluid motion. Arch Rational Mech Anal, 1959, 3:271-288 [38] Serre D, Solutions faibles globales deséquations de Navier-Stokes pour un fluide compressible. C R Acad Sci Paris Sér I Math, 1986, 303:639-642 [39] Serre D, Sur l'equation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris Sér I Math, 1986, 303:703-706 [40] Tani A, On the first initial-boundary value problem of compressible viscous fluid motion. Publ Res Inst Math Sci Kyoto Univ, 1977, 13:193-253 [41] Wen H Y, Zhu L M. Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field. J Differ Eqs, 2018, 264(3):2377-2406 [42] Zhang P X, Zhang J W, Zhao J N. On the global existence of classical solutions for compressible Navier-Stokes equation with vacuum. Discrete Cont Dyn Serious A, 2016, 36(2):1085-1103 [43] Zhang P X, Deng X M, Zhao J N. Global classical solutions to the 3-D isentropic compressible Navier-Stokes equations with general initial energy. Acta Mathematica Scientia, 2012, 32(6):2141-2160 [44] Zhang J L, Song C M, Li H. Global solutions for the one-dimensional compressible Navier-Stokes-Smoluchowski system. J Math Phys, 2017, 58(5):051502 |
|