Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (2): 467-490.doi: 10.1007/s10473-022-0203-z
• Articles • Previous Articles Next Articles
Li-Xin ZHANG
Received:
2020-01-29
Online:
2022-04-25
Published:
2022-04-22
Supported by:
CLC Number:
Li-Xin ZHANG. STRONG LIMIT THEOREMS FOR EXTENDED INDEPENDENT RANDOM VARIABLES AND EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS[J].Acta mathematica scientia,Series B, 2022, 42(2): 467-490.
[1] Chen Y Q, Chen A Y, Ng K W. The strong law of large numbers for extended negatively dependent random variables. Journal of Applied Probability, 2010, 47(4):908-922 [2] Chen Z J. Strong laws of large numbers for sub-linear expectations. Science in China-Mathematics, 2016, 59(5):945-954 [3] Chen Z J, Hu F. A law of the iterated logarithm for sublinear expectations. Journal of Financial Engineering, 2014, 1(2):1450015(23pp) [4] Chen Z J, Wu P Y, Li B M. A strong law of large numbers for nonadditive probabilities. International Journal of Approximate Reasoning, 2013, 54:365-377 [5] Block H W, Savits T H, Shaked M. Some concepts of negative dependence. Ann Probab, 1982, 10:765-772 [6] Denis L, Martini C. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann Appl Probab, 2006, 16(2):827-852 [7] Gilboa I. Expected utility theory with purely subjective non-additive probabilities. J Math Econom, 1987, 16:65-68 [8] Joag-Dev K, Proschan F. Negative association of random variables with applications. Ann Statist, 1983, 11(1):286-295 [9] Lehmann E. Some concepts of dependence. Ann Math Statist, 1966, 37(5):1137-1153 [10] Liu L. Precise large deviations for dependent random variables with heavy tails. Statist Prob Lett, 2009, 79:1290-1298 [11] Maccheroni F, Marinacci M. A strong law of large number for capacities. Ann Probab, 2005, 33:1171-1178 [12] Marinacci M. Limit laws for non-additive probabilities and their frequentist interpretation. J Econom Theory, 1999, 84:145-195 [13] Matula P. A note on the almost sure convergence of sums of negatively dependent random variables. Statist Probab Lett, 1992, 15:209-213 [14] Móricz F. A general moment inequality for the maximum of partial sums of single series. Acta Sci Math Szeged, 1982, 44:67-75 [15] Newman C M. Asymptotic independence and limit theorems for positively and negatively dependent random variables//Tong Y L. Inequalities in Statistics and Probability. IMS Lecture Notes-Monograph Series, 1984, 5:127-140 [16] Newman C M, Wright A L. An invariance principle for certain dependent sequences. Ann Probab, 1981, 9:671-675 [17] Peng S. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer type. Probab Theory Related Fields, 1999, 113:473-499 [18] Peng S. G-expectation, G-Brownian motion and related stochastic calculus of Ito type//Benth F E, Nunno G D, Tom Lindstrøm T et al. Stochastic Analysis and Applications-Proceedings of the 2005 Abel Symposium. Berlin Heidelberg:Springer-Verlag, 2007:541-567 [19] Peng S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process Appl, 2008, 118(12):2223-2253 [20] Peng S. A new central limit theorem under sublinear expectations. Manuscript. ArXiv:0803.2656v1[math.PR], 2008. https://arxiv.org/abs/0803.2656v1 [21] Peng S. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Science in China Ser A, 2009, 52(7):1391-1411 [22] Peng S G. Nonlinear Expectations and Stochastic Calculus under Uncertainty. New York:Springer, 2019 [23] Shao Q M. A Comparison theorem on moment inequalities between negatively associated and independent random variables. J Theort Probab, 2020, 13:343-356 [24] Shao Q M, Su C. The law of the iterated logarithm for negatively associated random variables. Stochastic Process Appl, 1999, 86:139-148 [25] Su C, Zhao L C, Wang Y B. Moment inequalities and weak convergence for negatively associated sequences. Science in China Ser A, 1997, 40:172-182 [26] Terán P. Laws of large numbers without additivity. Tran Amer Math Soc, 2014, 366:5431-5451 [27] Zhang L X. A Strassen's law of the iterated logarithm for negatively associated random vectors. Stoch Process Appl, 2001, 95:311-328 [28] Zhang L X. The weak convergence for functions of negatively associated random variables. J Mult Anal, 2001, 78:272-298 [29] Zhang L X. Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm. Communications in Math Stat, 2015, 3:187-214 [30] Zhang L X. Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications. Science in China-Mathematics, 2016, 59(4):751-768 [31] Zhang L X. Exponential inequalities under the sub-linearexpectations with applications to laws of the iterated logarithm. Science in China-Mathematics, 2016, 59(12):2503-2526 |
[1] | Jun WANG, Zhenlong CHEN. HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(2): 653-670. |
[2] | Fredj ELKHADHRA. LELONG-DEMAILLY NUMBERS IN TERMS OF CAPACITY AND WEAK CONVERGENCE FOR CLOSED POSITIVE CURRENTS [J]. Acta mathematica scientia,Series B, 2013, 33(6): 1652-1666. |
[3] | Veli Shakhmurov. ABSTRACT CAPACITY OF REGIONS AND COMPACT EMBEDDING WITH APPLICATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(1): 49-67. |
[4] | MAO Ming-Zhi, LI Zhi-Min. ASYMPTOTIC BEHAVIOR FOR RANDOM WALK IN RANDOM |ENVIRONMENT WITH HOLDING TIMES [J]. Acta mathematica scientia,Series B, 2010, 30(5): 1696-1708. |
[5] | CHEN Zhen-Long, LI Hui-Qiong. POLAR SETS OF MULTIPARAMETER BIFRACTIONAL BROWNIAN SHEETS [J]. Acta mathematica scientia,Series B, 2010, 30(3): 857-872. |
[6] | MAO Ming-Zhi, HAN Dong. LYAPOUNOV EXPONENTS AND LAW OF LARGE NUMBERS FOR RANDOM WALK IN RANDOM ENVIRONMENT WITH HOLDING TIMES [J]. Acta mathematica scientia,Series B, 2009, 29(5): 1383-1394. |
[7] | Bao Zhenhua; Ye Zhongxing. STRONG LAW OF LARGE NUMBERS AND ASYMPTOTIC EQUIPARTITION PROPERTY FOR NONSYMMETRIC MARKOV CHAIN FIELDS ON CAYLEY TREES [J]. Acta mathematica scientia,Series B, 2007, 27(4): 829-837. |
[8] | Hu Yijun; Ming Ruixing; Yang Wenquan. LARGE DEVIATIONS AND MODERATE DEVIATIONS FOR m-NEGATIVELY ASSOCIATED RANDOM VARIABLES [J]. Acta mathematica scientia,Series B, 2007, 27(4): 886-896. |
[9] | Chen Zhenlong. GENERALIZED BROWNIAN SHEET IMAGES AND BESSEL-RIESZ CAPACITY [J]. Acta mathematica scientia,Series B, 2007, 27(1): 77-91. |
[10] | Yang Chao; Zhang Jianzhong. ON THE BOTTLENECK CAPACITY EXPANSION PROBLEMS ON NETWORKS [J]. Acta mathematica scientia,Series B, 2006, 26(2): 202-208. |
[11] | ZHENG Shen-Zhou, KANG Xiu-Yang. THE COMPARISON OF GREEN FUNCTION |FOR QUASI-LINEAR ELLIPTIC EQUATION [J]. Acta mathematica scientia,Series B, 2005, 25(3): 470-480. |
[12] | Lu Guang-Cun. THE WEINSTEIN CONJECTURE ON C1-SMOOTH HYPERSURFACE OF CONTACT TYPE [J]. Acta mathematica scientia,Series B, 2002, 22(4): 557-563. |
[13] | YANG Chao, CHEN Xue-Qi. AN INVERSE MAXIMUM CAPACITY PATH PROBLEM WITH LOWER BOUND CONSTRAINTS [J]. Acta mathematica scientia,Series B, 2002, 22(2): 207-212. |
[14] | YANG Wei-Guo, LIU Wen. STRONG LAW OF LARGE NUMBERS AND SHANNON-MCMILLAN THEOREM FOR MARKOV CHAINS FIELD ON CAYLEY TREE [J]. Acta mathematica scientia,Series B, 2001, 21(4): 495-502. |
[15] | YANG Chao, LIU Jing-Lin. A CAPACITY EXPANSION PROBLEM WITH BUDGET CONSTRAINT AND BOTTLENECK LIMITATION [J]. Acta mathematica scientia,Series B, 2001, 21(3): 428-432. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|