[1] Gauduchon P. Le théorème de l'excentricité nulle. C R Acad Sci Paris Sér A-B, 1977, 285:A387-A390 [2] Kobayashi S. Hyperbolic Complex Spaces. New York:Springer, 1998 [3] Lee M C, Streets J. Complex manifolds with negative curvature operator. arXiv:1903.12645 [4] Lu Y C. Holomorphic mappings of complex manifolds. J Differential Geometry, 1968, 2:299-312 [5] Ni L. Liouville theorems and a Schwarz Lemma for holomorphic mappings between Kähler manifolds. Comm Pure Appl Math, 2021, 74:1100-1126 [6] Ni L. General Schwarz Lemmata and their applications. International J Math, 2019, 30(13):1940007 [7] Ni L, Zheng F Y. Positivity and Kodaira embedding theorem. ArXiv:1804.096096 [8] Royden H L. The Ahlfors-Schwarz lemma in several complex variables. Commentarii Mathematici Helvetici, 1980, 55(1):547-558 [9] Tossati V. A general Schwarz lemma for almost-Hermitian manifolds. Comm Anal Geom, 2007, 15(5):1063-1086 [10] Wu D, Yau S T. Negative holomorphic curvature and positive canonical bundle. Invent Math, 2016, 204(2):595-604 [11] Yang X K. RC-positivity, vanishing theorems and rigidity of holomorphic maps. arXiv:1807.02601 [12] Yang X K. RC-positivity and the generalized energy density I:Rigidity. arXiv:1810.03276 [13] Yang X K, Zheng F Y. On real bisectional curvature for Hermitian manifolds. Trans Amer Math Soc, 2019, 371(4):2703-2718 [14] Yau S T. A general Schwarz lemma for Kähler manifolds. Amer J Math, 1978, 100(1):197-203 [15] Zhang Y S. Integral inequalities for holomorphic maps and applications. Tran Amer Math Soc, 2021, 374(4):2341-2358 [16] Zhang Y S. A note on conical Kähler-Ricci flow on minimal elliptic Kähler surface. Acta Math Sci, 2018, 38B(1):169-176 |