Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (1): 164-176.doi: 10.1007/s10473-021-0109-1

• Articles • Previous Articles     Next Articles

GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES

Muhammad Zainul ABIDIN, Jiecheng CHEN   

  1. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
  • Received:2019-09-16 Revised:2020-05-30 Online:2021-02-25 Published:2021-04-06
  • Contact: Jiecheng CHEN E-mail:jcchen@zjnu.edu.cn
  • About author:Muhammad Zainul ABIDIN,E-mail:zainbs359@gmail.com
  • Supported by:
    The research was supported by NSFC (11671363, 11701519).

Abstract: In this paper we study the Cauchy problem of the incompressible fractional Navier-Stokes equations in critical variable exponent Fourier-Besov-Morrey space $\mathcal{F\dot{N}}_{p(\cdot),h(\cdot),q}^{s(\cdot)}(\mathbb{R}^3)$ with $s(\cdot) = 4-2\alpha-\frac{3}{p(\cdot)} $. We prove global well-posedness result with small initial data belonging to $\mathcal{F\dot{N}}_{p(\cdot),h(\cdot),q}^{4-2\alpha-\frac{3}{p(\cdot)} }(\mathbb{R}^3)$. The result of this paper extends some recent work.

Key words: fractional Navier-Stokes equations, global well-posedness, Fourier-Besov-Morrey space

CLC Number: 

  • 35Q30
Trendmd