Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1903-1911.
• Articles • Previous Articles Next Articles
Guijuan LIN1,2
Received:
2017-04-11
Revised:
2018-01-31
Online:
2018-12-25
Published:
2018-12-28
Supported by:
Guijuan LIN. LICHNEROWICZ-OBATA THEOREM FOR KOHN LAPLACIAN ON THE REAL ELLIPSOID[J].Acta mathematica scientia,Series B, 2018, 38(6): 1903-1911.
[1] Burns D, Epstein C. Embeddability for three-dimensional CR manifolds. Amer Math Soc, 1990, 4:809-840 [2] Beals R, Greiner P C. Calculus on Heisenberg Manifolds (AM-119). Princeton University Press, 2016 [3] Case J S, Chanillo S, Yang P. The CR Paneitz operator and the stability of CR pluriharmonic functions. Adv Math, 2016, 287:109-122 [4] Chanillo S, Chiu H L, Yang P. Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants. Duke Math J, 2012, 161(15):2909-2921 [5] Chen S C, Shaw M C. Partial Differential Equations in Several Complex Variables. American Mathematical Soc, 2001 [6] Chang S C, Wu C T. On the CR Obata theorem for Kohn Laplacian in a closed pseudohermitian hypersurface in Cn+1. Preprint, 2012 [7] Graham C R, Lee J M. Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math J, 1988, 57(3):697-720 [8] Kohn J J. Boundaries of Complex Manifolds//Proceedings of the Conference on Complex Analysis. Berlin, Heidelberg:Springer, 1965:81-94 [9] Li S Y, Luk H S. The sharp lower bound for the first positive eigenvalues of sub-Laplacian on the PseudoHermitian manifold. Proc Amer Math Soc, 2004, 132:789-798 [10] Li S Y, Son D N, Wang X D. A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian. Adv Math, 2015, 281:1285-1305 [11] Li S Y, Tran M. On the CR-Obata theorem and some extremal problem associated to pseudoscalar curvature on the real Ellipsoids in Cn+1. Trans Amer Math Soc, 2011, 363(8):4027-4042 [12] Li S Y, Wang X D. An Obata-type theorem in CR geometry. J Differential Geometry, 2013, 95(3):483-502 [13] Obata M. Certain Conditions for a Riemannian manifold to Be Isometric with a sphere. Math Soc Japan, 1962, 14:333-340 [14] Shao Z Q, Hong J X. The eigenvalue problem for the Laplacian equations. Acta Mathematica Scientia, 2007, 27B(2):329-337 [15] Xie C D, Shen Y T, Yao Y X. Eigenvalue problem of elliptic equations with Hardy potential. Acta Mathematica Scientia, 2009, 29B(5):1489-1496 |
[1] | Hanbing LIU, Haijun XIAO. BOUNDARY FEEDBACK STABILIZATION OF BOUSSINESQ EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1881-1902. |
[2] | Meiman SUN, Guozheng YAN. DISCRETENESS OF THE EXTERIOR TRANSMISSION EIGENVALUES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 110-124. |
[3] | Hua CHEN, Hongge CHEN, Yirui DUAN, Xin HU. LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1653-1664. |
[4] | Feng DU, Chuanxi WU, Guanghan LI, Changyu XIA. UNIVERSAL INEQUALITIES FOR A HORIZONTAL LAPLACIAN VERSION OF THE CLAMPED PLATE PROBLEM ON CARNOT GROUP [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1536-1544. |
[5] | Qun HE, Fanqi ZENG, Daxiao ZENG. ON THE FIRST EIGENVALUE OF THE MEAN FINSLER-LAPLACIAN [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1162-1172. |
[6] | G.SOARES. SOME FURTHER NOTES ON THE MATRIX EQUATIONS ATXB + BTXTA = C ANDATXB + BTXA = C [J]. Acta mathematica scientia,Series B, 2015, 35(1): 275-280. |
[7] | Geni GUPUR, Ehmet KASIM. FUNCTIONAL ANALYSIS METHOD FOR THE M/G/1 QUEUEING MODEL WITH OPTIONAL SECOND SERVICE [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1301-1330. |
[8] | Leszek GASINSKI, Nikolaos S. PAPAGEORGIOU. POSITIVE SOLUTIONS FOR PARAMETRIC EQUIDIFFUSIVE p-LAPLACIAN EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(3): 610-618. |
[9] | WANG Yu-Zhao, YANG Jie, CHEN Wen-Yi. GRADIENT ESTIMATES AND ENTROPY FORMULAE FOR WEIGHTED p-HEAT EQUATIONS ON SMOOTH METRIC MEASURE SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(4): 963-974. |
[10] | WANG Jiang-Chao, ZHANG Yi-Min. A BIHARMONIC EIGENVALUE PROBLEM AND ITS APPLICATION [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1213-1225. |
[11] | Mark Yasuda. SOME PROPERTIES OF COMMUTING AND ANTI-COMMUTING m-INVOLUTIONS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 631-644. |
[12] | MA Bing-Qing. ESTIMATES ON THE FIRST TWO POLY-LAPLACIAN EIGENVALUES ON SPHERICAL DOMAINS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 745-751. |
[13] | HUANG Guang-Yue, LI Xin-Xiao. ESTIMATES ON EIGENVALUES FOR THE BIHARMONIC OPERATOR ON A BOUNDED DOMAIN IN Hn(−1) [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1383-1388. |
[14] | YANG Chuan-Fu, YANG Xiao-Ping. AMBARZUMYAN’S THEOREM WITH EIGENPARAMETER IN THE BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1561-1568. |
[15] | SUN He-Jun, CHEN Da-Guang. ESTIMATES FOR |EIGENVALUES |OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR [J]. Acta mathematica scientia,Series B, 2011, 31(3): 826-834. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|