[1] Abikoff W. Degenerating Families of Riemann Surfaces. Princeton:Annals of Mathematics, 1977, 105(2):29-44 [2] Amano M. The asymptotic behavior of Jenkins-Strebel rays. New York:Conformal Geometry and Dynamics of the American Mathematical Society, 2014, 18(9):157-170 [3] Amano M. On behavior of pairs of Teichmüller geodesic rays. New York:Conformal Geometry and Dynamics of the American Mathematical Society, 2014, 18(2):8-30 [4] Bonatti C, Paris L. Roots in the mapping class groups. London:Proceedings of the London Mathematical Society, 2006, 98(2):471-503 [5] Farb B, Masur H. Teichmüller geometry of moduli space, I:distance minimizing rays and the DeligneMumford compactification. Boston:Journal of Differential Geometry, 2008, 85(2):187-227 [6] Gardiner F P. Teichmüller theory and quadratic differentials. New York:Wiley, 1987 [7] Herrlich F, Schmithuesen G. On the boundary of Teichmüller disks in Teichmüller and in Schottky space. Mathematics, 2007:293-349 [8] Hubbard J, Masur H. Quadratic differentials and foliations. Berlin:Acta Mathematica, 1979, 142(1):221-274 [9] Katok A B, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, 1995 [10] Kerckhoff S P. The asymptotic geometry of Teichmüller space. Berlin:Topology, 1978, 19(1):23-41 [11] Kra I. Canonical mappings between Teichmüller spaces. New York:Bulletin of the American Mathematical Society, 1981, 4(2):143-179 [12] Letho O. Univalent Functions and Teichmüller Spaces. Berlin:Springer, 2012, 109(5):1047-1050 [13] Liu J. On the Existence of Jenkins-Strebel Differentials. London:Bulletin of the London Mathematical Society, 2004, 36(3):365-377 [14] Masur H. The Jenkins Strebel differentials with one cylinder are dense. Commentarii Mathematici Helvetici, 1979, 54(1):179-184 [15] Strebel K. Quadratic Differentials. Berlin:Springer, 1984 [16] Taniguchi Masahiko. An introduction to Teichmüller spaces. Berlin:Springer-Verlag, 1992 [17] Walsh C. The asymptotic geometry of the Teichmüller metric. arXiv preprint arXiv, 2012:1210.5565 |