[1] Kalaj D. Schwarz lemma for holomorphic mappings in the unit ball. Mathematics, 2015 [2] Liu Y, Chen Z, Pan Y. A boundary Schwarz lemma for holomorphic mappings from the polydisc to the unit ball. Eprint Arxiv, 2014 [3] Liu Y, Chen Z, Pan Y. A boundary Schwarz Lemma for holomorphic mappings between unit balls of different dimensions. Eprint Arxiv, 2014 [4] Chen S, Rasila A. Schwarz-Pick type estimates of pluriharmonic mappings in the unit polydisk. Illinois Journal of Mathematics, 2014 [5] Li L, Li H, Zhao D. A Schwarz-Pick lemma for the modulus of holomorphic mappings from Bnp to Bmp. Complex Variables and Elliptic Equations, 2017, 62(12):1746-1757 [6] Liu Y, Dai S, Pan Y. Boundary Schwarz lemma for pluriharmonic mappings between unit balls. Journal of Mathematical Analysis and Applications, 2016, 433(1):487-495 [7] Liu T S, Tang X M. Schwarz lemma at the boundary of strongly pseudoconvex domain in Cn. Mathematische Annalen, 2016, 366(1/2):655-666 [8] Garnett J B. Bounded Analytic Functions[M]. New York:Academic Press, 1981 [9] Tang X M., Liu T S, Lu J. Schwarz lemma at the boundary of the unit polydisk in Cn. Science China Mathematics, 2015, 58(8):1639-1652 [10] Liu T S, Wang J F, Tang X M. Schwarz lemma at the boundary of the unit ball in Cn and its applications. Journal of Geometric Analysis, 2015, 25(3):1890-1914 [11] Zhao D, Han J, Li H. Peak function and support surface of a general Kohn-Nirenberg domain in Cn. Complex Variables and Elliptic Equations, 2013, 58(5):635-646 [12] Han J, Zhao D, Gao Z. Peak function and support surface of a Kohn-Nirenberg domain. Journal of Mathematical Analysis and Applications, 2013, 365(1):410-414 [13] Dai S, Chen H. Schwarz-Pick estimatves for partial derivatives of arbitary order of bounded holomorphic functions in the unit ball of Cn. Acta Mathematica Scientia, 2011, 31B(4):1624-1632 [14] Dai S, Pan Y. A Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. Acta Mathematica Scientia, 2014, 34B(6):1775-1780 |