Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (1): 151-156.doi: 10.1016/S0252-9602(17)30122-4
• Articles • Previous Articles Next Articles
Lixin CHENG, Sijie LUO
Received:
2016-12-12
Revised:
2017-03-13
Online:
2018-02-25
Published:
2018-02-25
Contact:
Sijie LUO
E-mail:winbestlsj@163.com
Supported by:
This work is partially supported by NSFC, grant 11371296, and by PhD Programs Foundation of MEC, Grant 20130121110032.
Lixin CHENG, Sijie LUO. YET ON LINEAR STRUCTURES OF NORM-ATTAINING FUNCTIONALS ON ASPLUND SPACES[J].Acta mathematica scientia,Series B, 2018, 38(1): 151-156.
[1] Acosta M D, Aron R M, García D, Maestre M. The Bishop-Phelps-Bollobás theorem for operators. J Funct Anal, 2008, 254(11):2780-2799 [2] Bandyopadhyay P, Godefroy G. Linear structures in the set of norm-attaining functionals on a Banach space. J Convex Anal, 2006, 13(3/4):489-497 [3] Bessaga C, Pe lczyński A. On bases and unconditional convergence of series in Banach spaces. Studia Math, 1958, 17(2):151-164 [4] Bishop E, Phelps R R. A proof that every Banach space is subreflexive. Bull Amer Math Soc, 1961, 67:97-98 [5] Bishop E, Phelps R R. The support functionals of a convex set//Proc Sympos Pure Math, Vol VⅡ. Providence, RI:Amer Math Soc, 1963:27-35 [6] Bollobás B. An extension to the theorem of Bishop and Phelps. Bull London Math Soc, 1970, 2:181-182 [7] Borwein J M. A note on ε subgradients and maximal monotonicity. Pacific J Math, 1982, 103(2):307-314 [8] Bourgain J. On dentability and the Bishop-Phelps property. Israel J Math, 1977, 28(4):265-271 [9] Brøndsted A, Rockafellar R T. On the subdifferentiability of convex functions. Proc Amer Math Soc, 1965, 16:605-611 [10] Cheng L, Dai D, Dong Y. A sharp operator version of the Bishop-Phelps theorem for operators from ℓ1 to CL-spaces. Proc Amer Math Soc, 2013, 141(3):867-872 [11] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47:324-353 [12] Ekeland I. Nonconvex minimization problems. Bull Amer Math Soc (NS), 1979, 1(3):443-474 [13] Fabian M. Each weakly countably determined Asplund space admits a Fréchet differentiable norm. Bull Aust Math Soc, 1987, 36(3):367-374 [14] Fabian M, Habala P, Hájek P, et al. Functional Analysis and Infinite-Dimensional Geometry. Springer Science & Business Media, 2013 [15] García-Pacheco F J. Three Non-Linear Problems on Normed Spaces. Kent State University, 2007 [16] García-Pacheco F J, Puglisi D. Lineability of functionals and operators. Studia Math, 2010, 201(1):37-47 [17] García-Pacheco F J, Puglisi D. Renormings concerning the lineability of the norm-attaining functionals. J Math Anal Appl, 2017, 445(2):1321-1327 [18] James R. Characterizations of reflexivity. Studia Math, 1964, 23(3):205-216 [19] Johnson W, Rosenthal H. On w*-basic sequences and their applications to the study of Banach spaces. Studia Math, 1972, 43(1):77-92 [20] Lin P K. Köthe-Bochner Function Spaces. Boston:Birkhäuser, 2004 [21] Lindenstrauss J. On operators which attain their norm. Israel J Math, 1963, 1:139-148 [22] Lindenstrauss J, Tzafriri L. Classical Banach Spaces Ⅱ:Function Spaces. Springer Science & Business Media, 2013 [23] Meyer-Nieberg P. Banach Lattices. Springer Science & Business Media, 2012 [24] Pe lczyński A. Projections in certain Banach spaces. Studia Math, 1960, 19(2):209-228 [25] Phelps R R. Convex Functions, Monotone Operators and Differentiability. Springer, 2009 [26] Phelps R R. The Bishop-Phelps Theorem, Ten Mathematical Essays on Approximation in Analysis and Topology. Amsterdam:Elsevier BV, 2005:235-244 [27] Qiu J H, Li B, He F. Vectorial Ekelaud's variational principle with a w-distance and its equivalent theorems. Acta Math Sci, 2012, 32(6):2221-2236 [28] Rosenthal H P. On subspaces of Lp. Ann Math, 1973, 97(2):344-373 |
[1] | Jasbir Singh MANHAS, Ruhan ZHAO. PRODUCTS OF WEIGHTED COMPOSITION AND DIFFERENTIATION OPERATORS INTO WEIGHTED ZYGMUND AND BLOCH SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1105-1120. |
[2] | Santhosh GEORGE, C. D. SREEDEEP. LAVRENTIEV'S REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 303-314. |
[3] | Zi WANG, Yuwen WANG. A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1619-1631. |
[4] | Dehua QIU, Pingyan CHEN, Volodin ANDREI. COMPLETE MOMENT CONVERGENCE FOR LP-MIXINGALES [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1319-1330. |
[5] | Xiaolong QIN, Sun Young CHO. CONVERGENCE ANALYSIS OF A MONOTONE PROJECTION ALGORITHM IN REFLEXIVE BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(2): 488-502. |
[6] | Kazuhide NAKAJO. IMPROVED GRAOIENT METHOD FOR MONOTONE AND LIPSCHITZ CONTINUOUS MAPPINGS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(2): 342-354. |
[7] | Shisheng ZHANG, Lin WANG, Lijuan QIN, Zhaoli MA. STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1641-1650. |
[8] | Sheng ZHU, Jianhua HUANG. STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEM AND BREGMAN TOTALLY QUASI-ASYMPTOTICALLY NONEXPANSIVE MAPPING IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1433-1444. |
[9] | Lingxin BAO. ON WEAK FILTER CONVERGENCE AND THE RADON-RIESZ TYPE THEOREM [J]. Acta mathematica scientia,Series B, 2016, 36(1): 215-219. |
[10] | Jasbir Singh MANHAS, Ruhan ZHAO. ESSENTIAL NORMS OF PRODUCTS OF WEIGHTED COMPOSITION OPERATORS AND DIFFERENTIATION OPERATORS BETWEEN BANACH SPACES OF ANALYTIC FUNCTIONS [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1401-1410. |
[11] | Choonkil PARK. QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1501-1510. |
[12] | Eric U. OFOEDU, Charles E. ONYI. APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1225-1240. |
[13] | Yekini SHEHU. CONVERGENCE ANALYSIS FOR SYSTEM OF EQUILIBRIUM PROBLEMS AND LEFT BREGMAN STRONGLY RELATIVELY NONEXPANSIVE MAPPING [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1081-1097. |
[14] | Yekini SHEHU. APPROXIMATION OF FIXED POINTS AND VARIATIONAL SOLUTIONS FOR PSEUDO-CONTRACTIVE MAPPINGS IN#br# BANACH SPACES [J]. Acta mathematica scientia,Series B, 2014, 34(2): 409-423. |
[15] | B. Yousefi, Sh. Khoshdel. REFLEXIVITY OF POWERS OF THE MULTIPLICATION OPERATOR ON SPECIAL FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2279-2284. |
|