[1] Brüll L, Lange H. Solitary waves for quasilinear Schrödinger equations. Expo Math, 1986, 4:278-288 [2] Brandi H, Manus C, Mainfry G, Lehner T, Bonnaud G. Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys Fluids B, 1993, 5:3539-3550 [3] Bass F G, Nasanov N N. Nonlinear electromagnetic-spin waves. Phys Rep, 1990, 189:165-223 [4] Cuccagna S. On instability of excited states of the nonlinear Schrödinger equation. Phys D, 2009, 238:38-54 [5] Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation:a dual approach. Nonlinear Anal, 2004, 56:213-226 [6] Chen X L, Sudan R N. Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys Rev Lett, 1993, 70:2082-2085 [7] De Bouard A, Hayashi N, Saut J. Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Comm Math Phys, 1997, 189:73-105 [8] Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J Differ Equ, 2015, 258:115-147 [9] Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J Differ Equ, 2016, 260:1228-1262 [10] Makhankov V G, Fedyanin V K. Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phys Rep, 1984, 104:1-86 [11] Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys B, 1980, 37:83-87 [12] Fleming W H. A selection-migration model in population genetic. J Math Biol, 1975, 20:219-233 [13] Kurihara S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Jpn, 1981, 50:3262-3267 [14] Kelley P L. Self focusing of optical beams. Phys Rev Lett, 1965, 15:1005-1008 [15] Lange H, Poppenberg M, Teismann H. Nash-Moser methods for the solution of quasilinear Schrödinger equations. Comm Partial Differ Equ, 1999, 24:1399-1418 [16] Laedke E, Spatschek K, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24:2764-2769 [17] Liu J, Wang Z. Soliton solutions for quasilinear Schrödinger equations, I. Proc Amer Math Soc, 2002, 131:441-448 [18] Liu J, Wang Y, Wang Z. Soliton solutions for quasilinear Schrödinger equations, Ⅱ. J Differ Equ, 2003, 187:473-493 [19] Liu J, Wang Y, Wang Z. Solutions for quasilinear Schrödinger equations via the Nehari Method. Comm Partial Differ Equ, 2004, 29:879-901 [20] Moameni A. Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in RN. J Differ Equ, 2006, 229:570-587 [21] Kosevich A M, Ivanov B A, Kovalev A S. Magnetic solitons. Phys Rep, 1990, 194:117-238 [22] Willem M. Minimax Theorem. Boston, MA:Birkhäuser Boston, Inc, 1996 [23] Poppenberg M, Schmitt K, Wang Z. On the existence of soliton solutons to quasilinear Schrödinger equations. Calc Var Partial Differ Equ, 2002, 14:329-344 [24] Ritchie B. Relativistic self-focusing and channel formation in laser-plasma interaction. Phys Rev E, 1994, 50:687-689 [25] Quispel G R W, Capel H W. Equation of motion for the Heisenberg spin chain. Phys A, 1982, 110:41-80 [26] Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc Var, 2010, 39:1-33 [27] Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal, 2013, 80:194-201 [28] Wang Y. A class of quasilinear Schrödinger equations with critical or supercritical exponents. Comput Math Appl, 2015, 70:562-572 [29] Wu X. Multiple solutions for quasilinear Schrödinger equations with a parameter. J Differ Equ, 2014, 256:2619-2632 |