[1] Alzalg B. Primal-dual path-following algorithms for circular programming. 2015, http://www.optimization-online.org/DBFILE/2015/07/4998.pdf [2] Bai Y Q, Gao X R, Wang G Q. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numer Algeb Control Optim, 2015, 5:211-231 [3] Dattorro J. Convex Optimization and Euclidean Distance Geometry. California:Meboo Publishing, 2005 [4] Alizadeh F, Goldfarb D. Second-order cone programming. Math Program, 2003, 95:3-51 [5] Zhou J C, Chen J S. Properties of circular cone and spectral factorization associated with circular cone. J Nonlinear Convex Anal, 2013, 14(4):807-816 [6] Boyd S P, Wegbreit B. Fast computation of optimal contact forces. IEEE Tran Robot, 2007, 23(6):1117-1132 [7] Ko C H, Chen J S. Optimal grasping manipulation for multifingered robots using semismooth Newton method. Math Probl Eng, 2013, 2013:1-9 [8] Li Z J, Sam Ge S Z, Liu S B. Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks. IEEE Tran Neural Networ, 2014, 25(8):1460-1473 [9] Zhou J C, Chen J S, Hung H F. Circular cone convexity and some inequalities associated with circular cones. J Inequal Appl, 2013, 2013:1-17 [10] Wan Z P, Wang X J, He J L, et al. Asymptotic approximation method and its convegence on semi-infinite programming. Acta Math Sci, 2006, 26B(1):17-24 [11] Liu X W, Yuan Y X. A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties. Math Program, 2010, 125:163-193 [12] Chi X N, Liu S Y. An infeasible-interior-point predictor-corrector algorithm for the second-order cone program. Acta Math Sci, 2008, 28(3):551-559 [13] Wang G Q, Bai Y Q. A class of polynomial interior point algorithms for the Cartesian P-Matrix linear complementarity problem over symmetric cones. J Optim Theory Appl, 2012, 152:739-772 [14] Pan S H, Chen J S. A damped Gauss-Newton method for the second-order cone complementarity problem. Appl Math Optim, 2009, 59:293-318 [15] Huang C C, Wang S. A power penalty approach to a nonlinear complementarity problem. Oper Res Lett, 2010, 38:72-76 [16] Qi L Q, Sun D F, Zhou G L. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math Program, 2000, 87:1-35 [17] Tang J Y, Dong L, Fang L, Zhou J C. A one-parametric class of smoothing functions for second-order cone programming. Comput Appl Math, 2014, 33(3):655-669 [18] Chi X N, Liu S Y. A one-step smoothing Newton methods for second-order cone programming. J Comput Appl Math, 2009, 223:114-123 [19] Huang Z H, Ni T. Smoothing algorithms for complementarity problems over symmetric cones. Comput Optim Appl, 2010, 45(3):557-579 [20] Zhang H C, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM J Optim, 2004, 14(4):1043-1056 [21] Hu S L, Huang Z H, Wang P. A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems, Optim. Methods Softw. 2009, 24(3):447-460 [22] Amini K, Ahookhosh M, Nosratipour H. An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer Algor, 2014, 66:49-78 [23] Mifflin R. Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim, 1997, 15:959-972 [24] Qi L Q, Sun J. A nonsmooth version of Newton's method. Math Program, 1993, 58:353-367 [25] Clarke F H. Optimization and Nonsmooth Analysis. New York:Wiley, 1983 [26] Huang Z H, Han J, Xu D, Zhang L. The noninterior continuation methods for solving the P0 nonlinear complementarity problem. Sci China, 2001, 44:1107-1114 [27] Fukushima M, Luo Z Q, Tseng P. Smoothing functions for second-order-cone complementarity problems. SIAM J Optim, 2001, 12(2):436-460 [28] Zhu J G, Hao B B. A new class of smoothing functions and a smoothing Newton method for complementarity probrems. Optim Lett, 2013, 7(3):481-497 [29] Tang J Y, He G P, Dong L, Fand L. A new one-step smoothing Newton method for second-order cone programming. Appl Math, 2012, 57:311-331 |