[1] Plackett R L, Burman J P. The Design of Optimum Multifactorial Experiments. Biometrika, 1946, 33:305-325
[2] Chen H, Cheng C S. Doubling and projection:A method of constructing two-level designs of resolution IV. Ann Statist, 2006, 34:546-558
[3] Xu H, Cheng C S. A complementary design theory for doubling. Ann Statist, 2008, 36:445-457
[4] Ou Z J, Qin H. Some applications of indicator function in two-level factorial designs. Statist Probab Letters, 2010, 80:19-25
[5] Lei Y J, Qin H. Uniformity in double design. Acta Mathematicae Applicatae Sinica, 2014, 30(3):773-780
[6] Zhou Y D, Ning J H, Song X B. Lee discrepancy and its applications in experimental designs. Statist Probab Letters, 2008, 78:1933-1942
[7] Zou N, Ren P, Qin H. A note on Lee discrepancy. Statist Probab Letters, 2009,79:496-500
[8] Chatterjee K, Qin H, Zou N. Lee discrepancy on two and three mixed level factorials. Science in China, 2012, 55(3):663-670
[9] Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann Statist, 2001, 29:549-560
[10] Xu H. Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 2003, 13:691-708
[11] Hickernell F J, Liu M Q. Uniform designs limit aliasing. Biometrika, 2002, 89:893-904
[12] Qin H, Wang Z H, Chatterjee K. Uniformity pattern and related criteria for q-level factorials. J Stat Plan Inference, 2012, 142:1170-1177
[13] Chatterjee K, Li Z H, Qin H. Some new lower bounds to centered and wrap-around L2-discrepancies. Statist Probab Letters, 2012, 82:1367-1373
[14] Qu X G. A maximum estimability criterion for design classification and selection. J Stat Plan Inference, 2006, 136:2756-2769 |