Acta mathematica scientia,Series B ›› 2016, Vol. 36 ›› Issue (2): 345-358.doi: 10.1016/S0252-9602(16)30004-2

• Articles • Previous Articles     Next Articles

FAST ALGORITHM FOR CALDERÓN-ZYGMUND OPERATORS: CONVERGENCE SPEED AND ROUGH KERNEL

Qixiang YANG1, Yong DING2   

  1. 1. School of Mathematics and statistics, Wuhan University, 430072 Hubei, China;
    2. School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems(BNU), Ministry of Education, Beijing 100875, China
  • Received:2014-05-21 Revised:2015-10-02 Online:2016-04-25 Published:2016-04-25
  • Supported by:

    Supported by NNSF of China (11271209, 11371057, 11571261) and SRFDP (20130003110003).

Abstract:

In this article, we consider a fast algorithm for first generation Calderón-Zygmund operators. First, we estimate the convergence speed of the relative approximation algorithm. Then, we establish the continuity on Besov spaces and Triebel-Lizorkin spaces for the operators with rough kernel.

Key words: First generation Calderón-Zygmund operators, wavelets, rough kernel, ring type operators, Besov spaces and Triebel-Lizorkin spaces

CLC Number: 

  • 42B20
Trendmd