[1] Alonso R J, Gamba I M. Distributional and classical solutions to the Cauchy-Boltzmann problem for soft potentials with integrable angular cross section. J Stat Phys, 2009, 137: 1147-1165
[2] Bardos C, Degond P. Global existence for the Vlasov-Poisson equation in three space variables with small initial data. Ann Inst Henri P′oincare C, 1985, 2: 101-118
[3] Chae M, Ha S -Y. New Lyapunov functionals of the Vlasov-Poisson system. SIAM J Math Anal, 2006, 37(6): 1709-1731
[4] Chae M, Ha S -Y, Hwang H J. Time-asymptotic behavior of the Vlasov-Poisson-Boltzmann system near vacuum. J Differential Equations, 2006, 230: 71-85
[5] Choi S -H, Ha S -Y. Asymptotic behavior of the nonlinear Vlasov equation with a self-consistent force. SIAM J Math Anal, 2011, 43: 2050-2077
[6] Choi S -H, Ha S -Y, Lee H. Dispersion estimates for the two-dimensional Vlasov-Yukawa system with small data. J Differential Equations, 2011, 250(1): 515-550
[7] Desvillettes L, Dolbeault J. On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Commun Partial Diffential Equations, 1991, 16: 451-489
[8] Duan R -J, Zhang M, Zhu C. L1-stability for the Vlasov-Poisson-Boltzmann system around vacuum. Math Models Methods Appl Sci, 2006, 16: 1505-1526
[9] Glassey R, Strauss W A. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson- Boltzmann system. Discrete Contin Dynam Systems, 1999, 5: 457-472
[10] Guo Y. The Vlasov-Poisson-Boltzmann system near Maxwellians. Commun Pure Appl Math, 2002, 55: 1104-1135
[11] Guo Y. The Vlasov-Poisson-Boltzmann system near vacuum. Commun Math Phys, 2001, 218: 293-313
[12] Ha S -Y. Nonlinear functionals of the Boltzmann equation and uniform stability estimates. J Differential Equations, 2005, 215: 178-205
[13] Ha S -Y. 1-stability of the Boltzmann equation for the hard-sphere model. Arch Rat Mech Anal, 2004, 173: 279-296
[14] Ha S -Y, Ha T, Hwang C -O, Lee H. Nonlinear instability of the one-dimensional Vlasov-Yukawa system. J Math Phys, 2011, 52: 033301
[15] Ha S -Y, Kim Y, Lee H, Noh S. Asymptotic completeness for relativistic kinetic equations with short-range interaction forces. Methods Appl Anal, 2007, 14: 251-262
[16] Ha S -Y, Lee H. Global well posedness of the relativistic Vlasov-Yukawa system with small data. J Math Phys, 2007, 48: 123508
[17] Lions P L, Perthame B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent Math, 1991, 105: 415-430
[18] Mischler S. On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Commun Math Phys, 2000, 210: 447-466
[19] Pfaffelmoser K. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J Differential Equations, 1992, 95: 281-303
[20] Piazza F, Marinoni, C. Model for gravitational interaction between dark matter and baryons. Phys Rev Lett, 2003, 91: 141301
[21] Rein G. Collisionless kinetic equations from astrophysics-the Vlasov-Poisson system//Handbook of Differ- ential Equations: Evolutionary Equations, Vol III. North-Holland, Amsterdam: Elsevier, 2007: 383-476
[22] Saito K, Maruyama T, Soutome K. Collective modes in hot and dense matter. Phys Rev C, 1989, 40: 407-431
[23] Yang T, Yu H -J, Zhao H -J. Cauchy problem for the Vlasov-Poisson-Boltzmann system. Arch Rat Mech Anal, 2006, 182(3): 415-470
[24] Yukawa H. On the interaction of elementary particles. Proc Phys Math Soc Jpn, 1935, 17: 48-57 |