[1] Chen Q, Tan Z. Global existence and convergence rates of smooth solutions for the compressible magneto- hydrodynamics equations. Nonlinear Anal, 2010, 72: 4438–4451
[2] Chen G Q, Wang D. Global solutions of nonlinear magnetohydrodynamics with large initial data. J Differ Equ, 2002, 182: 344–376
[3] Chen G Q, Wang D. Existence and continuous dependence of large solutions for the magnetohydrodynamics equations. Z Angew Math Phys, 2003, 54: 608–632
[4] Chen Z Z, Xiao Q H, Zhao H J. Time periodic solutions of compressible fluid models of Korteweg type. Math Phys, 2012, arXiv: 1203.6529
[5] Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rate for the compressible Navier-Stokes equations with potential force. Math Models Methods Appl Sci, 2007, 17: 737–758
[6] Duan R J, Ukai S, Yang T, Zhao H J. Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications. Comm Math Phys, 2008, 277(1): 189–236
[7] Fan J, Yu W. Global variational solutions to the compressible magnetohydrodynamic equations. Nonlinear Anal, 2008, 69: 3637–3660
[8] Fan J, YuW. Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal, 2009, 10: 392–409
[9] Hoff D, Tsyganov E. Uniqueness and continuous dependence of weak solutions in compressible magneto- hydrodynamics. Z Angew Math Phys, 2005, 56: 215–254
[10] Hu X, Wang D. Global solutions to the three-dimensional full compressible magnetohydrodynamics flows. Comm Math Phys, 2008, 283: 253–284
[11] Hu X, Wang D. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows. Arch Ration Mech Anal, 2010, 197: 203–238
[12] Ju N. Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space. Comm Math Phys, 2004, 251: 365–376
[13] Kawashima S, Okada M. Smooth global solutions for the one-dimensinal equations in magnetohydrody- namics. Proc Japan Acad Ser A Math Sci, 1982, 58: 384–387
[14] Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics [D]. Kyoto University, 1983
[15] Kawashima S. Smooth global solutions for two-dimensinal equations of electromagneto-fluid dynamics, Japan J Appl Math, 1984, 1: 207–222
[16] Li H L, Xu X Y, Zhang J W. Global classical solutions to 3D compressible magnetohydrodynamic equations
with large oscillations and vacuum. SIAM J Math Anal, 2013, 45(3): 1356–1387
[17] Li F, Yu H J. Optimal decay rate of solutions to the compressible magnetohydrodynamic equations. Proc Roy Soc Edinburgh Sect A, 2011, 141: 109–126
[18] Ma H F, Ukai S, Yang T. Time periodic solutions of compressible Navier-Stokes equations. J Differ Equ, 2010, 248: 2275–2293
[19] Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat- conductive gases. J Math Kyoto Univ, 1980, 20: 67–104
[20] Tan Z, Wang H Q. Time periodic solutions of compressible magnetohydrodynamic equations. Nonlinear Anal, 2013, 76: 153–164
[21] Michael E. Taylor, Partial Differential Equations III. New York: Springer-Verlag, 1996
[22] Ukai S. Time periodic solutions of Boltzmann equation. Discrete Contin Dynam Systems, 2006, 14: 579–596
[23] Umeda T, Kawashiwa S, Shizuta Y. On the decay of solutions to the linearized equations of electromag- netofluid dynamics. Japan J Appl Math, 1984, 1: 435–457
[24] Ukai S, Yang T. The Boltzmann equation in the sapce L2 \ L1 : global and time periodic solution. Anal Appl, 2006, 4(3): 263–310
[25] Volpert A I, Khudiaev S I. On the Cauchy problem for composite systems of non-linear equations. Mat Sb,1972, 87: 504–528
[26] Wang D. Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J Appl Math, 2003, 63: 1424–1441 |