[1] Bondy J A, Murty U S R. Graph Theory with Application Networks. London: Kluwer Academic Publish-ers, 1976
[2] Tsai C H. Fault-tolerant cycles embedded in hypercubes with mixed link and node failures. Appl Math Lett, 2008, 21: 855–860
[3] Li T K, Tsai C H, Tan J M, Hsu L H. Bipanconnectivity and edge-fault-tolerant bipancyclicity of hyper-cubes. Inform Process Lett, 2003, 87: 107–110
[4] Tsai C H, Tan J M, Liang T, Hsu L H. Fault-tolerant hamiltonian laceability of hypercubes. Inform Process Lett, 2002, 83: 301–306
[5] Tsai C H. Cycles embedding in hypercubes with node failures. Inform Process Lett, 2007, 102: 242–246
[6] Saad Y, Schultz M H. Topological of hypercubes. IEEE Trans Comput, 1988, 37(7): 867–872
[7] Hsieh S Y. Fault-tolerant cycles embedding in the hypercube with both faulty vertices and faulty edges. Parallel Comput, 2006, 32: 84–91
[8] Tzeng N F, Wei S. Enhanced hypercube. IEEE Transactions on Computer, 1991, 3: 284–294
[9] Liu H M. The structural features of enhanced hypercube networks. The 5th International Conference on Natural Computation, 2009: 345–348
[10] Liu HM. Properties and performance of enhanced hypercube networks. J Systems Science and Information, 2006, 3: 251–256
[11] Liu H M. The construction of disjoint paths in folded hypercube. J Systems Science and Informance, 2010, 8: 97–102
[12] Hsieh S Y, Kuo C N, Huang H L. 1-vertex-fault-tolerant cycles embedding on folded hypercubes. Discrete Appl Math, 2009, 157: 3094–3098
[13] Wang D. Embedding hamiltonian cycles into folded hypercubes with faulty links. Parallel Distr Comput, 2001, 61: 545–564
[14] Choudum S A, Nandini R U. Complete binary trees in folded and enhanced cube. Networks, 2004, 43: 226–272
[15] Leighton F T. Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes. San Mateo, CA: Morgan Kaufmann, 1992
[16] Xu J M, Ma M J. A survey on cycle and path embedding in some networks. Frontiers of Mathematics in China, 2009, 4(2): 217–252
[17] Xu J M, Du Z Z, Xu M. Edge-fault-tolerant edge-bipancyclicity of hypercubes. Inform Process Lett, 2005, 96(4): 146–150
[18] Fu J S. Fault-tolerant cycles embedding in the hypercube. Parallel Comput, 2003, 29: 821–832
[19] Chang NW, Hsieh S Y. Fault-tolerant bipancyclicity of faulty hypercubes under the generalized conditional-fault model. IEEE Trans Comm, 2011, 59(12): 3400–3409
[20] Huang C W, Huang H L, Hsieh S Y. Edge-bipancyclicity of star graphs with faulty elements. Theoretical Computer Science, 2011, 412(50): 6938–6947
[21] Kuo C N, Hsieh S Y. Pancyclicity and bipancyclicity of conditional faulty folded hypercubes. Information Sciences, 2010, 180(15): 2904–2914
[22] Hsieh S Y, Lee C W. Pancyclicity of restricted hypercube-like networks under the conditional fault model. SIAM J Discrete Math, 2010, 23(4): 2010–2019
[23] Hsieh S Y, Lee C W. Conditional edge-fault hamiltonicity of matching composition networks. IEEE Trans Parall Distr Sys, 2009, 20(4): 581–592
[24] Liu H M, Liu M. Paths and cycles embedding on faulty enhanced hypercube networks. Acta Math Sci, 2013, 33B(1): 227–246 |