[1] Adams R. Sobolev Spaces. New York: Academic Press, 1975
[2] Allaire G, Briane M. Multiscale convergence and reiterated homogenization. Proc Roy Soc Edinburgh, Sect A, 1996, 126: 297–342
[3] Amirat Y, Hamdache K, Ziani A. Homog´en´eisation d’´equations hyperboliques du premier ordre et ap-plication aux ´ecoulements miscibles en milieux poreux. Ann Inst Henri Poincar´e, Anal non lin, 1989, 6: 397–417
[4] Bensoussan A, Lions J L, Papanicolaou G. Asymptotic Analysis for Periodic Structures. North-Holland, 1978
[5] Besicovitch A S. Almost Periodic Functions. New York: Dover, 1954
[6] Bogso A. Homog´en´eisation d’un op´erateur non lin´eaire `a coefficients p´eriodiques. M´emoire de D.E.A.-Maths, Universit´e de Yaound´e 1, 2006
[7] Briane M, Allaire G. Multiscale convergence and reiterated homogenization. Proc Roy Soc Edinburgh, Sect A, 1996, 126: 297–342
[8] Cavalcanti M M, Cavalcanti V N D, Soriano J A, Souza J S. Homogenization and uniform stabilization for a nonlinear hyperbolic equation in domains with holes of small capacity. Electr J Diff Eqns, 2004, 2004: 1–19
[9] Cavalcanti M M, Cavalcanti V N D, Andrade D, Ma T F. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete Contin Dyn Syst, 2006, 16: 721–743
[10] Fiedler B, Vishik M I. Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients. Russ Math Surveys, 2002, 57: 709–728
[11] Fournier J J F, Stewart J. Amalgams of Lp and ?q. Bull Amer Math Soc, 1985, 13: 1–21
[12] Lions J L, Lukkassen D, Persson L E, Wall P. Reiterated homogenization of monotone operators. C R Acad Sci Paris, S´er I Math, 2000, 330: 675–680
[13] Lions J L, Lukkassen D, Persson L E, Wall P. Reiterated homogenization of nonlinear monotone operators. Chin Ann Math, Ser B, 2001, 22: 1–12
[14] Lukkassen D, Nguetseng G, Wall P. Two-scale convergence. Int J Pure Appl Math, 2002, 2: 35–86
[15] Lukkassen D, Nguetseng G, Nnang H, Wall P. Reiterated homogenization of nonlinear elliptic operators in a general deterministic setting. J Funct Spaces Appl, 2009, 7: 121–152
[16] Nguetseng G. Almost periodic homogenization: asymptotic analysis of a second order elliptic equation (Preprint, 2000)
[17] Nguetseng G. Homogenization structures and applications I. Zeit Anal Anwend, 2003, 22: 73–107
[18] Nguetseng G, Nnang H. Homogenization of nonlinear monotone operators beyond the periodic setting. Electr J Diff Eqns, 2003, 2003: 1–24
[19] Nguetseng G, Nnang H, Svanstedt N. Asymptotic analysis for a weakly damped wave equation with application to a problem arising in elasticity. J Funct Spaces Appl, 2010, 8(1): 17–54
[20] Nguetseng G, Nnang H, Svanstedt N. G-Convergence and homogenization of monotone damped hyperbolic equations. Banach J Math Anal, 2010, 4: 100–115
[21] Nguetseng G, Woukeng J L. Deterministic homogenization of parabolic monotone operators with time dependent coefficients. Electr J Diff Eqns, 2004, 2004: 1–24
[22] Nguetseng G, Woukeng J L. -convergence of nonlinear parabolic operators. Nonlinear Analysis, TMA, 2007, 66: 968–1004
[23] Nnang H, Woukeng J L. Deterministic homogenization of nonlinear degenerate parabolic operators. Syl-labus Review, Science Serie, 2009, 1: 36–50
[24] Svanstedt N. Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2: 181–192
[25] Svanstedt N. Convergence of quasi-linear hyperbolic equations. J Hyperbolic Differ Equ, 2007, 4(2): 655–677
[26] Woukeng J L. Homogenization of nonlinear degenerate non-monotone elliptic operators in perforated domains with tiny holes. Acta Appl Math, 2010, 112(1): 35–68
[27] Woukeng J L, Dongo D. Multiscale homogenization of nonlinear hyperbolic equations with several time scales. Acta Math Sci, 2011, 31B(3): 843–856 |