Acta mathematica scientia,Series B ›› 2011, Vol. 31 ›› Issue (4): 1213-1244.doi: 10.1016/S0252-9602(11)60311-1

• Articles •     Next Articles

ON A BI-HARMONIC EQUATION INVOLVING CRITICAL EXPONENT: EXISTENCE AND MULTIPLICITY RESULTS

 Zakaria Boucheche1, Ridha Yacoub1, Hichem Chtioui2   

  1. 1.Institut Préparatoire aux Etudes d'Ingénieur de Monastir, Avenue Ibn Al Jazzar, 5019 Monastir, Tunisia;2.Département de Mathématiques, Faculté|des Sciences de Sfax, Route Soukra, Sfax, Tunisia
  • Received:2009-08-27 Revised:2010-04-08 Online:2011-07-20 Published:2011-07-20

Abstract:

In this paper,  we consider the problem of existence as well as multiplicity results for a bi-harmonic equation under the Navier
boundary conditions: Δ2 u=K(x)up, u>0 in Ω, Δuu=0 on ∂Ω, where Ω is a smooth domain in Rn, n≥5, and p+1 = 2n/n-4 is the critical Sobolev exponent. We obtain highlightly a new criterion of existence, which provides existence results for a dense subset of positive functions, and generalizes Bahri-Coron type criterion in dimension six. Our argument gives also estimates on the Morse index of the obtained solutions and extends some known results. Moreover, it provides, for generic K, Morse inequalities at infinity, which delivers  lower bounds for the number of solutions. As further applications of this  Morse theoretical approach, we prove more existence results.

Key words: critical points at infinity, Palais-Smale condition, Morse lemma at infinity, Morse inequalities

CLC Number: 

  • 53C15
Trendmd