[1] Bertini L, Cancrini N, Cesi F. The spectral gap for a Glauber-type dynamics in a continuous gas. Ann Inst H Poincare (Probab Sta), 2002, 38(1): 91--108
[2] Cesi F. Quasi-factorisation of entropy and log-Sobolev inequalities for Gibbs random fields. Probab Theory Rel Fields, 2001, 120: 569--584
[3] Hoeffding W. Probability inequalities for sums of bounded random variables. J Amer Stat Assoc, 1963, 58: 13--30
[4] Janson S. Bounds on the distributions of extremal values of a scanning process. Stoch Proc Appl, 1984, 18: 313--328
[5] Klein T, Ma Y, Privault N. Convex concentration inequalities and forward-backword stochastic calculus. Elect J Probab, 2006, 11: 486--512
[6] Nguyen X X, Zessin H. Integral and differential characterizations of the Gibbs process. Math Nachr, 1979, 88: 105--115
[7] Picard J. Formule de dualite sur l'espace de Poisson. Ann Inst H Poincar\'e (Probab Stat), 1996, 32(4): 509--548
[8] Ruelle D. Statistical Mechanics: Rigorous Results. New York: Benjamin, 1969
[9] Wu L. A new modified Logarithmic Sobolev inequality for Poisson point process and some applications. Probab Theory Rel Fields, 2000, 118: 427--438
[10] Wu L. Estimate of spectral gap for continuous gas. Ann Inst H Poincar\'e (Probab Stat), 2004, 40: 387--409
[11] Wu L. Poincar\'e and transportation inequalities for Gibbs measures under Dobrushin uniqueness condition. Ann Probab, 2006, 34(5): 1960--1989
|