Acta mathematica scientia,Series B ›› 2005, Vol. 25 ›› Issue (3): 481-491.
• Articles • Previous Articles Next Articles
BAI Yu-Zhen, SHU De-Meng
Online:
Published:
Supported by:
. Project Supported by NSFC(10071022)
Abstract:
A persistence theorem for resonant invariant tori with non-Hamiltonian per- turbation is proved. The method is a combination of the theory of normally hyperbolic invariant manifolds and an appropriate continuation method. The results obtained are extensions of Chicone’s for the three dimensional non-Hamiltonian systems.
Key words: Normally hyperbolic invariant manifolds, invariant tori, persistence,;contin- uation method
CLC Number:
BAI Yu-Zhen, SHU De-Meng. PERSISTENCE OF RESONANT INVARIANT TORI WITH NON-HAMILTONIAN PERTURBATION[J].Acta mathematica scientia,Series B, 2005, 25(3): 481-491.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/
http://121.43.60.238/sxwlxbB/EN/Y2005/V25/I3/481
[1] Chicone C. Invariant tori for periodically perturbed oscillators. Publ Math, 1997, 41(1): 57-83 [2] Chicone C, Liu W S. On the continuation of an invariant torus in a family with rapid oscillations. SIAM J Math Anal, 2000, 31(2): 386-415 [3] Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J, 1971, 21: 193-226 [4] Hale J K. Ordinary Differential Equations. Wiley-Interscience, 1969 [5] Kopell N. Invariant manifolds and the initialization problem for some atmospheric equations. Physica D, 1985, 14: 203-215 [6] Wiggins S. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. New York: Springer-Verlag, 1994
Cited