[1] Kocic V L, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Application.
Dordrecht: Kluwer Academic Publishers, 1993
[2] Kocic V L, Ladas G, Rodrigues I W. On rational recursive sequences. J Math Anal Appl, 1993, 173:
127-157
[3] Kocic V L, Ladas G. Global attractivity in a nonlinear second-order difference equation. Communications
on Pure and Applied Mathematics, 1995, 48: 1115-1122
[4] Ou C H, Tang H S, Luo W. Global stability for a class of difference equation. Appl Math J Chinese Univ,
2000, 15B(1): 33-36
[5] Jaroma J H. Global asymptotic stability of a delay difference equation. In: Proceedings of First Interna-
tional Conference on Difference Equations. Texas: Gordon and Breach, 1994. 25-28
[6] Kocic V L, Ladas G. Global attractivity in a second-order nonlinear difference equation. J Math Anal
Appl, 1993, 180: 144-150
[7] Aboutaleb M T, El-Sayed M A, Hamza A E. Stability of the recursive sequence xn+1 = (_ − _xn)/( +
xn−1). J Math Anal Appl, 2001, 261: 126-133
[8] Agarwal R P, Li W T, Pang P Y H. Asymptotic behavior of a class of nonlinear delay difference equations.
J Difference Equations and Applications, 2002, 8(8): 719-728
[9] Darwen C, Patula W T. Properties of a certain Lyness equation. J Math Anal Appl, 1998, 218: 458-478
[10] Devault R, Kosmala W, Ladas G, Schultz S W. Global behavior of yn+1 = (p + yn−k)/(qyn + yn−k).
Nonlinear Analysis TMA, 2001, 47: 4743-4751
[11] El-Owaidy H M, El-Afifi M M. A note on the periodic cycle of xn+2 = (1+xn+1)/xn. Appl Math Comput,
2000, 109: 301-306
[12] Feuer J, Janowski E J, Ladas G. Lyness-type equations in the third quadrant. Nonlinear Analysis TMA,
1997, 30: 1183-1189
[13] Kosmala W, Kulenovic M R S, Ladas G, Teixeira C T. On the rational sequence yn+1 = (p+yn−1)/(qyn+
yn−1). J Math Anal Appl, 2000, 251: 517-586
[14] Kulenvic M R S, Ladas G, Prokup N R. A rational difference equation. Computers Math Appl, 2001, 41:
671-678
[15] Kulenvic M R S, Ladas G, Prokup N R. On the recursive sequence xn+1 = (_xn + _xn−1)/(1 + xn). J
Difference Equations and Applications, 2000, 6(5): 563-576
[16] Kulenovic M R S, Ladas G. Dynamics of the second order rational difference equations: with open problems
and conjectures. Boca Raton: Chapman & Hall/CRC, 2001
[17] Kuruklis S A. The asymptotic stability of xn+1−axn+bxn−k = 0. J Math Anal Appl, 1994, 188: 719-731
[18] Li W T, Sun H R. Global attractivity in a rational recursive sequence. Dynamic Systems and Applications,
2002, 11: 339-346
[19] Yan X X, Li W T, Sun H R. Global attractivity in a higher order nonlinear difference equation. Applied
Mathematics E-Notes, 2002, 2: 51-58
[20] Yan X X, Li W T. Global Attractivity in the recursive sequence xn+1 = (_ − _xn)/( − xn−1). Appl
Math Comput, 2003, 138: 415-423
[21] Yan X X, Li W T. Global Attractivity in a rational recursive sequence. Appl Math Comput, 2003, 145:
1-12
[22] Li W T, Sun H R, Yan X. X. The asymtotic behavior of a higher order delay nonlinear difference equations.
Indian J Pure Appl Math, 2003, 34: 1431-1441
[23] Li W T. Permanence and asymptotic behavior of nonlinear delay difference equations. Appl Math Mech,
2003, 24: 1273-1280
[24] Li X Y, Zhu D M, Qualitative analysis of bobwhite quail population model. Acta Math Sci, 2003, 23B:
46-52
|