[1] Bondy J A, Murty U S R. Graph theory with applications. London: Macmillan, 1978
[2] Casell A C, et al. Cycle bases of minimum measure for the strural analysis of skeletal structures by the
flexibility method. Proc Roy Soc London Ser A, 1976, 35: 61-70
[3] Chua L O, Chen L. On optimally sparse cycle and coboundary basis for a linear graph. IEEE Trans Circuit
Theory, 1973, CT-20: 495-503
[4] Downs G D, et al. Review of ring perception algorithms for chemical graphs. J Chem Inf Comput Sci,
1989, 29: 172-187
[5] Freier S M, et al. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl
Acad Sci (USA), 1986, 83: 9373-9377
[6] Hartvigsen D, Zemel E. Is every cycle base fundamental? J of Graph Theory, 1989, 13: 117-137
[7] Hartvigsen D, Mardon R. When do short cycles generate the cycle space? J Combin Theory, 1993, 57B:
88-99
[8] Phillip Hall. On representatives of subsets. London Math Soc, 1935, 10: 26-30
[9] Horton J D. A polynomial-time algorithm to find the shortest cycle base of a graph. SIAM J Comput,
1987, 16: 359-366
[10] Kaveh A. Structural Mechanics: Graph and Matrix Mathods. Exeter, UK: Research studies Press, 1992
[11] Leydold J, et al. Minimal cycle bases of outerplanar graphs. Electronic J Combin, 1998, 5#16: 14
[12] Liu G. On connectivities of tree graphs. J of Graph Theory, 1988, 12: 453-459
[13] Liu Y P. Embeddibility in graphs. Boston: Kluwer Acad Publishers, 1995
[14] Tutte W. A homotopy theorem for matroids I, II. Trans AMS, 1958, 88: 144-160; 161-174
[15] Vismara P. Union of all the minimum cycle bases of a graph. Electronic J Combin, 1997, 4 #9: 15
[16] Voss V -J. Cycles and bridges in graphs. Dordrecht: Kluwer, 1990
[17] Welsh C J A. Matroid theory. Acad Press, 1976
[18] White A L. Theory of matroids. Cambridge Univ Press, 1986
[19] White A L. Combinatorial geometries. Cambridge Univ Press, 1987
[20] White A L. Matroids application. Cambridge Univ Press, 1992
[21] Whitney H. On abstract properties of linear dependence. Amer J Math, 1935, 57: 509-533 |