1 Bezzi F, Fortin M. Mixed and hybrid finite element methods. New York: Springer Verlag, 1991
2 Brezis H, Gallouet T. Nonlinear schr¨odinger evolution equations. Nonlinear Analysis, Theory, Methods &
Applications, 1980,4: 677-681
3 Foias C, Manley O, Temam R. On the interaction of small eddies in two-dimensional turbulence flows.
Math Modeling and Numerical Analysis, 1988,22: 93-114
4 Foias C, Sell G R, Temam R. Inertial manifolds for nonlinear evolutionary equations. Journal of Differential
Equations, 1988,73: 309-353
5 Garc´?a-Achilla B, Novo J, Titi E. An approximate inertial manifolds approach to postprocessing the
galerkin method for the navier-stokes equations. Mathematics of Computation, 1999,68: 893-911
6 Girault V, Raviart P A. Finite element methods for the navier-stokes equations, theory and algorithms.
Berlin: Springer Verlag, 1986
7 Gunzburger M. Finite element methods for viscous incompressible flow, a guide to theory, practice and
algorithms. Boston: Academic Press, 1989
8 He Yinnian, Li Kaitai. Convergence and stability of finite element nonlinear galerkin method for the
Navier-Stokes equations. Numer Math, 1998, 79: 77-106
9 Layton W, Lenferink W. Two-level picard, defect correction for the Navier-Stokes equations. Appl Math
and Computing, 1995, 80: 1-12
10 Li Kaitai, Huang Aixiang. Inertial manifold method for the Navier-Stokes equations(in Chinese). Journal
of Xi’an Jiaotong University, 1991, 5(25): 7-15
11 Li Kaitai, Hou Yanren. Fourier nonlinear galerkin methods for Navier-Stokes equations. Discrete and
Continuous Dynamical Systems, 1996,2: 497-524
12 Lin Q, Yan N. Construction and analysis of high performance finite elements (in Chinese). Hebei University
Press, 1996
13 Luo Zhendong, Wang Lieheng. Nonlinear galerkin mixed element methods for the nonstationary conductionconvection
problems (I): the Continuous-Time Case (in Chinese). Mathematica Numerica Sinica, 1998,
3(20):305-324
14 Marion M, Xu J. Error estimates on a new nonlinear galerkin method based on two-grid finite elements.
SIAM J Numer Anal, 1995,32: 1170-1184
15 Okamoto H. Nearly singular two-dimensional kolmogorov flows for large reynolds numbers. J Dynamics
and Differential Equations, 1996,8: 203-220
16 Okamoto H, Sh¯oji M. Bifurcation diagrams in the problem of incompressible viscous fluid flows in 2D tori.
Japan J Indus Appl Math, 1993,10: 191-218
17 Temam R. Navier-Stokes equation and nonlinear functional analysis, CBNS-NSF regional conference series
in applied mathematics. SIAM, Philadelphia, Pennsylvania, 1983 |