1 Aalen O O. Statistical Theory a family of counting process. Institute of Mathematical Statistics, Univ
Copenhagen, 1976
2 Blum J R, Susarla V. Maximal deviation theory of density and failure estimates based on censored data.
In: Krishnaiah P R ed. Multivariate Analysis V. New York: North-Hollard, 1980. 213-222
3 Chung K L. An estimate concerning the Kolmogorov limit distribution. Trans Amer Math Soc, 1949, 67:
36-50
4 Deheuvels P, Einmahl J H J. On the strong limiting behavior of local functionals of empirical processes
based upon censored data. Ann Probab, 1996, 24: 504-525
5 Deheuvels P, Mason D M. Functional laws of the iterated logarithm for local empirical processes indexed
by sets. Ann Probab, 1994, 22: 1619-1661
6 Einmahl J H J, Koning A J. Limit theorems for a general weighted process under random censoring. Canad
J Statist, 1992, 20: 77-89
7 Einmahl J H J, Ruymgaart F H. The almost sure behavior of the oscillation modulus of the Multivariate
empirical process. Lett Statist Probab, 1987, 6: 87-96
8 Gu M G, Lai T L. Functional laws of the iterated logarithm for the product-limit estimator of a distribution
function under random censorship or truncated. Ann Probab, 1990, 18: 160-189
9 Kaplan E L, Meier P. Nonparametric estimation from incomplete observations. J Amer Stat Assoc, 1958,
53: 457-481
10 Mielniczuk J. Some asymptotic properties of kernel estimators of a density function in case of censored
data. Ann Statist, 1986, 14: 766-773
11 Shorack G R, Wellner J A. Empirical processes with applications to statistics. New York: Wiley, 1986
12 Zhou Y, Sun L Q, Yip P. The almost sure behavior of oscillation modulus for PL-process and cumulative
hazard process and their applications for censored data. Chin Scien, 1998, 28A(7): 594-605 |