1 Bjorken J D, Drell S D. Relativistic Quantum Fields. New York: McGraw-Hill, 1965
2 Berezin F A. The Method of Second Quantization. New York: Academic Press, 1962
3 Bogolubov N N, Logunov A A, Okska A I, Todorov I T. General Principles of Quantum Field Theory.
Math Phys and Appl Math, 10. Dordreht: Kluwer, 1990
4 Chung D M, Ji U C, Obata N. Higher powers of quantum white noises in terms of integral kernel operator.
Infinite Dimensional Analysis, Quatum Probability and Related Topics, 1998,1(4):533-560
5 CochranWG. Kuo H H, Sengupta A. A new class of white noise generalized functions. Infinite Dimensional
Analysis, Quantum Probability and Related Topic, 1998, 1(1): 43-68
6 Dirac P A M. The quantum theory of emission and absorption of radiation. Proc R Soc London, 1927,
114A: 243-265
7 Friedrichs K O. Mathematical Aspects of the Quantum Theory of Fields. New York: Interscience, 1953
8 Hida T. Analysis of Browian functionals. Carleton Math Lect Notes Vol.13. Ottawa: Cartelon University,
1975
9 Hida T, Kuo H H, Potthoff J, Streit L. White Noise, An Infinite Dimensional Analysis. Dordrecht: Kluwer,
1992
10 Huang Z Y. Quantum white noise, white noise approach to quantum stochastic calculus. Nagoya Math J,
1993,129: 23-42
11 Huang Z Y, Luo S L. Quantum white noise and free field. Infinite Dimensional Analysis, Quantum
Probability and Related Topic, 1998, 1(1): 69-82
12 Kondratiev Y G, Streit L. Spaces of white noise distributions: construction, application. I Rep Math Phys,
1993, 33: 41-366
13 Morawetz C, Strauss W. Decay and scattering of solutions of nonlinear relativistic wave equations. Com-
mun Pure Appl Math, 1972, 25: 1-31; 1973, 26:45-74
14 Obata N. An analytic characterization of symbols of operators on white noise functionals. J Math Soc,
Japan, 1993, 45: 421-445
15 Reed M, Simon B. Methods of Modern Mathematical Physics. Vol 1,2. New York: Academic Press, 1975
16 Schwartz L. Th´eorie des Distributions `a Varleur Vectorielles. Ann Inst Fourier, 1957, 7:1-141; 1959, 8:
1-209, Grenogle
17 Wightman A N S, G°arding L. Fields as operator valued distributions in relativistic quantum field theory.
Arkiv Fysik, 1965, 28: 129-184 |