[1]Bredon G E. Topology and geometry. New York: Springer-Verlag, 1993
[2]Fuchs L. Infinite abelian groups. New York: Academic Press, 1970
[3]Lee D W. Derived cup product and (strictly) derived groups. Bull Korean Math Soc, 1998,35(4):791-807
[4]Lee D W. Strictly derived groups and t-step strong homology groups. Far East J Math Sci, 1998,6(3):401-414
[5]Lee H J, Lee D W. On the strong homology groups. Honam Math J, 1996, 18(1):103-111
[6]Lee H J, Lee D W. Strong homology groups w.r.t. Pp2Z¯ Cp(X;R). Honam Math J, 1997,19(1): 131-138
[7]Lisica J T, Mardeˇsi´c S. Strong homology of inverse system of spaces I,II. Topology Appl, 1985,19: 29-64
[8]Mardeˇsi´c S, Miminoshvili Z. The relative homeomorphism and wedge axioms for strong homology. GlasnikMat, 1990, 25(45): 387-416
[9]Mardeˇsi´c S, Prasolov A V. Strong homology is not additive. Trans Amer Math Soc, 1988, 307(2): 725-744
[10]Mardeˇsi´c S, Prasolov A V. On strong homology of compact spaces. Topology Appl, 1998,82: 327-354
[11]Mardeˇsi´c S, Segal J. Shape theory. New York, Amsterdam: North-Holland Publ Co, 1982
[12]Mardeˇsi´c S, Watanabe T. Strong homology and dimension. Topology Appl, 1988,29:185-205
[13]McGibbon C A. Phantom maps, Handbook of algebraic topology. New York: North-Holland, 1995
[14]McGibbon C A, Steiner R. Some questions about the first derived functor of the inverse limit. J Pure Appl Algebra, 1995, 103: 325-340
[15]Mdzinarishvili L, Spanier E. Inverse limits and cohomology. Glasnik Mat, 1993, 28(48): 167-176
[16]Spanier E. Algebraic topology. New York: McGraw-Hill, 1966 |