[1] Badora R. On Hyers-Ulam stability of Wilson´s functional equation. Aequationes Math, 2000, 60: 211–218
[2] Badora R. On a generalized Wilson functional equation. Georgian Math J, 2005, 12(4): 595–606
[3] Baker J A. The stability of the cosine equation. Proc Amer Math Soc, 1980, 80: 411–416
[4] Baker J A, Lawrence J, Zorzitto F. The stability of the equation f(x + y) = f(x)f(y). Proc Amer Math Soc, 1979, 74: 242–246
[5] Benson C, Jenkins J, Ratkliff G. Bounded K-spherical functions on Heisenberg groups. J Funct Anal, 1992, 105: 409–443
[6] Bouikhalene B. On Hyers-Ulam stability of generalised Wilson´s equations. J Inequal Pure Appl Math, 2004, 5(4): Article 100
[7] Bouikhalene B, Kabbaj S. Gelfand pairs and generalised d´Alembert´s and Cauchy´s functional equations. Georgian Math J, 2005, 12(2): 207–216
[8] Bouikhalene B, Elqorachi E, Rassias J M. The superstability of d´Alembert´s functional equation on the Heisenberg group. Appl Math Lett, 2010, 23(1): 105–109
[9] Brzd¸ek J, Popa D, Xu B. The Hyers-Ulam stability of linear equations of higher orders. Acta Math Hungar, 2008, 120: 1–8
[10] Cao H X, Lv J R, Rassias J M. Superstability for generalized module left derivations and generalized module derivations on a Banach module (II). J Pure & Appl Math, 2009, 10(2): 1–8
[11] Cao P, Xu B. Note on the superstability of d´Alembert type functional equations. Bull Korean Math Soc, 2009, 46(2): 235–243
[12] Cho Y J, Rassias Th M, Saadati R. Stability of Functional Equations in Random Normed Spaces. Springer
Optimization and Its Applications, Vol 86. Springer, 2013
[13] Corovei I. The functional equation f(xy) + f(yx) + f(xy−1) + f(y−1x) = 4f(x)f(y) for nilpotent groups. Buletinul S¸tiint¸ific al Institutului Politehnic Cluj-Napoca, 1977, 20: 25–28
[14] Davison T M K. D´Alembert´s functional equation on topological monoids. Publ Math Debrecen, 2009, 75(1/2): 41–66
[15] Elqorachi E, Akkouchi M. On Hyers-Ulam stability of Cauchy and Wilson equations. Georgian Math J, 2004, 11(1): 69–82
[16] Gavruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl, 1994, 184: 431–436
[17] Gajda Z. A Generalization of D´Alembert´s Functional Equation. Funkcial Ekvac, 1990, 33: 69–77
[18] Hyers D H, Isac G I, Rassias Th M. Stability of Functional Equations in Several Variables. Boston, Basel, Berlin: Birkh¨auser Verlag, 1998
[19] Kannappan Pl, Kim G H. On the stability of the generalized cosine functional equations. Ann Acad Pedagog Crac Stud Math, 2001, 1: 49–58
[20] Kim G H. The Stability of pexiderized cosine functional equations. Korean J Math, 2008, 16(1): 103–114
[21] Rassias J M. On approximately of approximately linear mappings by linear mappings. J Funct Anal, 1982, 46: 126–130
[22] Rassias J M, Ravi K, Arunkumar M, Senthil Kumar B V. Ulam stability of mixed type cubic and additive functional equation. Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149–175
[23] Rassias J M, Son E, Kim H M. On the Hyers-Ulam stability of 3D and 4D mixed type mappings. Far East J Math Sci, 2011, 48(1): 83–102
[24] Rassias J M, Rassias M J. Refined Ulam stability for Euler-Lagrange type mappings in Hilbert spaces. Intern J Appl Math Stat, 2007, 7: 126–132
[25] Rassias Th M. On the stability of linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72: 297–300
[26] Ravi K, Rassias J M, Arunkumar M, Kodandan R. Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation. J Ineq Pure Appl Math, 2009, 10(4): 1–29
[27] Redouani A, Elqorachi E, Rassias Th M. The superstability of d’Alembert’s functional equation on step 2 nilpotent groups. Aequationes Math, 2007, 74(3): 237–248
[28] Roukbi A, Zeglami D, Kabbaj S. Hyers-Ulam stability of Wilson’s functional equation. Math Sciences: Adv Appl, 2013, 22: 19–26
[29] Stetkær H. d’Alembert’s equation and spherical functions. Aeq Math, 1994, 48: 220–227
[30] Stetkaer H. Wilson’s functional equations on groups. Aeq Maths, 1995, 49: 252–275
[31] Stetkær H. Functional equations on abelian groups with involution. Aeq Math, 1997, 54: 144–172
[32] Stetkaer H. Functional equations and matrix-valued spherial function. Aeq Maths, 2005, 69(3): 271–292
[33] Sz´ekelyhidi L. On a theorem of Baker, Lawrence and Zorzitto. Proc Amer Math Soc, 1982, 84: 95–96
[34] Sz´ekelyhidi L. On a stability theorem. C R Math Rep Acad Sci Canada, 1981, 3: 253–255
[35] Tyrala I. The stability of the second generalization of d’Alembert’s functional equation. Scientic Issues,
Mathematics XIII, Cz¸e stochowa, 2008
[36] Ulam S M. A Collection of Mathematical Problems. New York: Interscience Publ, 1961; Problems in Modern Mathematics. New York: Wiley, 1964
[37] Xu T Z, Rassias J M, Rassias M J, Xu W X. A fixed point approach to the stability of quintic and sextic functional equations in quasi- -normed spaces. J Inequal Appl 2010, Art ID 423231
[38] Zeglami D, Roukbi A, Kabbaj S. Hyers-Ulam Stability of Generalized Wilson´s and d´Alembert´s Functional
equations. Afr Mat, 2013, DOI: 10.1007/s13370-013-0199-6
[39] Zeglami D, Kabbaj S, Roukbi A. Superstability of a generalization of the cosine equation. Br J Math Comput Sci, 2014, 4(5): 719–734 |