[1] Zygmund A. Trigonometric Series. Cambridge, UK: Cambridge University Press, 1979
[2] Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloquium Mathematicum, 1951, 2: 73–74
[3] Fast H. Sur la convergence statistique. Colloq Math, 1951, 2: 241–244
[4] Schoenberg I J. The integrability of certain functions and related summability methods. Amer Math Monthly, 1959, 66: 361–375
[5] Connor J S. The statistical and strong p-Cesaro convergence of sequences. Analysis, 1988, 8: 47–63
[6] Et M. Strongly almost summable difference sequences of order m defined by a modulus. Studia Sci Math Hungar, 2003, 40(4): 463–476
[7] Et M. Spaces of Ces`aro difference sequences of order r defined by a modulus function in a locally convex space. Taiwanese J Math, 2006, 10(4): 865–879
[8] Fridy J. On statistical convergence. Analysis, 1985, 5: 301–313
[9] G¨ung¨or M, Et M, Altin Y. Strongly (V, λ, q)-summable sequences defined by Orlicz functions. Appl Math Comput, 2004, 157(2): 561–571
[10] I¸sik M. Generalized vector-valued sequence spaces defined by modulus functions. J Inequal Appl 2010, Art. ID 457892, pp7
[11] Mursaleen M. λ-statistical convergence. Math Slovaca, 2000, 50(1): 111–115
[12] Rath D, Tripathy B C. On statistically convergent and statistically Cauchy sequences. Indian J Pure Appl Math, 1994, 25(4): 381–386
[13] Š al´at T. On statistically convergent sequences of real numbers. Math Slovaca, 1980, 30: 139–150
[14] Sava¸s E. Strong almost convergence and almost λ-statistically convergence. Hokkaido Math J, 2000, 29: 531–536
[15] Bhardwaj V K, Singh N. Some sequences defined by Orlicz functions. Demonstratio Math, 2000, 33(3): 571–582
[16] Braha N L. A new class of sequences related to the ?p spaces defined by sequences of Orlicz functions. J Inequal Appl 2011, Art. ID 539745, pp10
[17] Das G, Mishra S K. Banach limits and lacunary strong almost convergence. J Orissa Math Soc, 1983, 2: 61–70
[18] Freedman A R, Sember J J, Raphael M. Some Cesaro-type summability spaces. Proc Lond Math Soc, 1978, 37(3): 508–520
[19] Fridy J A, Orhan C. Lacunary statistical convergence. Pacific J Math, 1993, 160: 43–51
[20] Tripathy B C, Mahanta S. On a class of generalized lacunary difference sequence spaces defined by Orlicz functions. Acta Math Appl Sin Engl Ser, 2004, 20(2): 231–238
[21] Tripathy B C, Baruah A. Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers. Kyungpook Math J, 2010, 50(4): 565–574
[22] Tripathy B C, Dutta H. On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary nm-statistical convergence. An S¸tiint¸ Univ “Ovidius” Constant¸a Ser Mat, 2012, 20(1): 417–430
[23] Tripathy B C, Hazarika B, Choudhary B. Lacunary I-convergent sequences. Kyungpook Math J, 2012, 52(4): 473–482
[24] Tripathy B C, Dutta A J. Lacunary bounded variation sequence of fuzzy real numbers. J Intell Fuzzy Systems, 2013, 24(1): 185–189
[25] Gadjiev A D, Orhan C. Some approximation theorems via statistical convergence. Rocky Mountain J Math, 2002, 32(1): 129–138
[26] C¸ olak R. Statistical convergence of order α. Modern Methods in Analysis and Its Applications. New Delhi, India: Anamaya Pub, 2010: 121–129
[27] Lindberg, K. On subspaces of Orlicz sequence spaces. Studia Math, 1973, 45: 119–146
[28] Lindenstrauss J, Tzafriri T. On Orlicz sequence spaces. Israel J Math, 1971, 10: 379–390
[29] Krasoselski?? M A, Ruticki?? Ja B. Convex Functions and Orlicz Spaces. Gorningen, Netherlands, 1961
[30] Altin Y, Et M, Tripathy B C. The sequence space | ¯N , pk|(M, r, q, s) on seminormed spaces. Appl Math Comput, 2004, 154(2): 423–430
[31] Et M, Altin Y, Choudhary B, Tripathy B C. On some classes of sequences defined by sequences of Orlicz functions. Math Inequal Appl, 2006, 9(2): 335–342
[32] G¨ungor M, Et M. r-strongly almost summable sequences defined by Orlicz functions. Indian J Pure Appl Math, 2003, 34(8): 1141–1151
[33] Mursaleen M, Khan Q A, Chishti T A. Some new convergent sequences spaces defined by Orlicz functions and statistical convergence. Ital J Pure Appl Math, 2001, 9: 25–32
[34] Savas E, Rhoades B E. On some new sequence spaces of invariant means defined by Orlicz functions. Math
Inequal Appl, 2002, 5(2): 271–281
[35] Tripathy B C, Altin Y, Et M. Generalized difference sequence spaces on seminormed space defined by Orlicz
functions. Math Slovaca, 2008, 58(3): 315–324
[36] Tripathy B C, Borgohain S. Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function. Adv Fuzzy Syst, 2011, Art ID 216414, pp6
[37] Tripathy B C, Hazarika B. Some I-convergent sequence spaces defined by Orlicz functions. Acta Math Appl Sin Engl Ser, 2011, 27(1): 149–154 |