[1] Barrow J, Parsons P. Inflationary models with logarithmic potentials. Phys Rev D, 1995, 52(10): 5576-5587 [2] Gorka P. Logarithmic quantum mechanics: Existence of the ground state. Found Phys Lett, 2006, 19(6): 591-601 [3] Enqvist K, McDonald J. Q-balls and baryogenesis in the MSSM. Phys Lett B, 1998, 425(3/4): 309-321 [4] Chen H, Luo P, Liu G W. Global solutions and blow-up of a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl, 2015, 422(1): 84-98 [5] Han Y Z. Note Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl, 2019, 474(1): 513-517 [6] Le C N, Le X T. Global solution and blow-up for a class of -Laplacian evolution equations with logarithmic nonlinearity. Acta Appl Math, 2017, 151(1): 149-169 [7] Han Y Z, Cao C L, Sun P. A -Laplace equation with logarithmic nonlinearity at high initial energy level. Acta Appl Math, 2019, 164(1): 155-164 [8] Cheng J Z, Wang Q R. Global existence and finite time blowup for a mixed pseudo-parabolic -Laplacian type equation. Nonlinear Anal: Real World Appl, 2023, 73(1): 1-22 [9] Chen H, Liu N. On the existence with exponential decay and the blow-up of solutions for coupled systems of semi-linear corner-degenerate parabolic equations with singular potentials. Acta Math Sci, 2021, 41B(1): 257-282 [10] Chen H, Xu H. Global existence, exponential decay and blow-up in finite time for a class of finitely degenerate semilinear parabolic equations. Acta Math Sci, 2019, 39B(5): 1290-1308 [11] Cao Y, Liu C H. Initial boundary value problem for a mixed pseudo-parabolic -Laplacian type equation with logarithmic nonlinearity. Electron J Differential Equations, 2018, 2018: Art 116 [12] Ding H, Zhou J. Global existence and blow-up for a mixed pseudo-parabolic -Laplacian type equation with logarithmic nonlinearity. J Math Anal Appl, 2019, 478(2): 393-420 [13] Ding H, Zhou J. Global existence and blow-up for a mixed pseudo-parabolic -Laplacian type equation with logarithmic nonlinearity-II. Appl Anal, 2021, 100(2): 2641-2658 [14] He Y J, Cao H H, Wang H.Blow-up and decay for a class of pseudo-parabolic -Laplacian equation with logarithmic nonlinearity. Comput Math Appl, 2018, 75(2): 459-469 [15] Pereira D, Araújo G, Raposo C, Cabanillas V. Blow-up results for a viscoelastic beam equation of -Lapacian type with strong damping and logarithmic source. Math Method Appl Sci, 2023, 46(8): 8831-8854 [16] Ji S M, Yin J X, Cao Y. Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity. J Differential Equations, 2016, 261(10): 5446-5464 [17] Azizieh C, Clément P. A priori estimates and continuation methods for positive solutions of -Laplace equations. J Differential Equations, 2002, 179(1): 213-245 [18] Mitidieri E, Pohozaev S I. The absence of global positive solutions of quasilinear elliptic inequalities. Dokl Akad Nauk (in Russian), 1998, 359(4): 456-460 [19] Mitidieri E, Pohozaev S I. Nonexistence of positive solutions for quasilinear elliptic problems on  . Proc Steklov Inst Math, 1999, 227(4): 186-216 [20] Yin J X, Jin C H. Periodic solutions of evolutionary -Laplacian with nonlinear sources. J Math Anal Appl, 2010, 368(2): 604-622 [21] Wang Y F, Yin J X, Wu Z Q. Periodic solutions of evolution -Laplacian equations with nonlinear sources. J Math Anal Appl, 1998, 219(1): 76-96 [22] Simon J. Compact sets in the space        . Annali di Matematica Pura ed Applicata,1986, 146(1): 65-96 [23] Amann H. Compact embeddings of vector valued Sobolev and Besov spaces. Glasnik Matematički, 2000, 35(55): 161-177 [24] Chen X, Jüngel A, Liu J G. A note on Aubin-Lions-Dubinskiǐ lemmas. Acta Appl Math, 2014, 133(1): 33-43 [25] Mizoguchi N. Periodic solutions for degenerate diffusion equations. Indiana Univ Math J, 1995, 44(2): 413-432 |