[1] Bourgain J.Green's Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, 158. Princeton, NJ: Princeton University Press, 2005 [2] Bourgain J.Hölder regularity of the integrated density of states for the almost Mathieu operator in a perturbative regime. Lett Math Phys, 2000, 18: 51-83 [3] Bourgain J.On the construction of affine extractors. Geom Funct Anal, 2007, 17: 33-57 [4] Bourgain J.Positivity and continuity of the Lyapunov exponent for shifts on $\mathbb{T}^{d}$ with arbitrary frequency vector and real analytic potential. J Anal Math, 2005, 96: 313-355 [5] Bourgain J, Goldstein M.On nonperturbative localization with quasi-periodic potential. Ann Math, 2000, 152: 835-879 [6] Bourgain J, Goldstein M, Schlag W.Anderson localization for Schrödinger operators on $\mathbb{Z}^{2}$ with quasi-periodic potential. Acta Math, 2002, 188: 41-86 [7] Bourgain J, Jitomirskaya S.Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J Stat Phys, 2002, 108: 1203-1218 [8] Cantero M J, Moral L, Velázquez L.Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl, 2003, 362: 29-56 [9] cocycles and applications to random CMV matrices and the Ising model. Int Math Res Not, 2015, 2015: 7110-7129 [10] cocycles with uniformly positive Lyapunov exponents. J Approx Theory, 2009, 161: 813-818 [11] cocycles over strictly ergodic subshifts. J Approx Theory, 2007, 144: 133-138 [12] Probab Statist, 1997, 33: 797-815 [13] Goldstein M, Schlag W.Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann Math, 2001, 154: 155-203 [14] Han R, Zhang S W.Large deviation estimates and Hölder regularity of the Lyapunov exponents for quasi-periodic Schrödinger cocycles. Int Math Res Not, 2022, 2022(3): 1666-1713 [15] Jian W W, Shi Y F.Sharp Hölder continuity of the integrated density of states for extended Harper's model with a Liouville frequency. Acta Math Sci, 2019, 39B(5): 1240-1254 [16] Jitomirskaya S.Metal-insulator transition for the almost Mathieu operator. Ann Math, 1999, 150: 1159-1175 [17] Jitomirskaya S, Liu W C, Shi Y F.Anderson localization for multi-frequency quasi-periodic operators on $\mathbb{Z}^{d}$. Geom Funct Anal, 2020, 30: 457-481 [18] Klein S.Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J Funct Anal, 2005, 218: 255-292 [19] Lin Y X, Piao D X, Guo S Z.Anderson localization for the quasi-periodic CMV matrices with Verblunsky coefficients defined by the skew-shift. J Funct Anal, 2023, 285: 109975 [20] Liu W C.Quantitative inductive estimates for Green's functions of non-self-adjoint matrices. Anal PDE, 2022, 15: 2061-2108 [21] Simon B.Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory. Amer Math Soc Colloq Publ, vol 54. Providence, RI: Amer Math Soc, 2005 [22] Wang F P, Damanik D.Anderson localization for quasi-periodic CMV matrices and quantum walks. J Funct Anal, 2019, 276: 1978-2006 [23] Wang Y Q, Zhang Z H.Uniform positivity and continuity of Lyapunov exponents for a class of $\mathcal{C}^{2}$ quasiperiodic Schrödinger cocycles. J Funct Anal, 2015, 268: 2525-2585 [24] You J G, Zhang S W.Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycle with weak Liouville frequency. Ergod Th Dynam Sys, 2014, 34: 1395-1408 [25] Zhang Z H.Positive Lyapunov exponents for quasi-periodic Szegö cocycles. Nonlinearity, 2012, 25: 1771-1797 [26] Zhu X W.Localization for random CMV matrices. J Approx Theory, 2024, 298: 106008 |