Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (6): 2099-2110.doi: 10.1007/s10473-024-0603-3

Previous Articles     Next Articles

THE HÖOLDER CONTINUITY OF THE LYAPUNOV EXPONENT FOR A QUASI-PERIODIC SZEGÖ COCYCLE

BEI ZHANG   

  1. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
  • Received:2023-10-20 Revised:2024-07-11 Online:2024-12-25 Published:2024-12-06
  • About author:BEI ZHANG, E-mail: zhangbei1929@163.com
  • Supported by:
    NSFC (11571327, 11971059).

Abstract: In this paper, I consider the Hölder continuity of the Lyapunov exponent for a quasi-periodic Szegö cocycle with weak Liouville frequency. I extend the existing results about the regularity of the Lyapunov exponent from the Schrödinger cocycle in [24] to a Szegö cocycle.

Key words: Szegö, cocycle, Lyapunov exponents, Hölder continuity, orthogonal polynomials

CLC Number: 

  • 37A30
Trendmd