[1] Abresch U. Lower curvature bounds, Toponogov's theorem,bounded topology II. Ann SciÉcole Norm Sup, 1987, 20(3): 475-502 [2] Brendle S. The logarithmic Sobolev inequality for a submanifold in Euclidean space. Comm Pure Appl Math, 2022, 75: 449-454 [3] Brendle S. Sobolev inequalities in manifolds with nonnegative curvature. Comm Pure Appl Math, 2022, 75: 1-26 [4] Davies E B.Heat Kernels and Spectral Theory. Cambridge: Cambridge University Press, 1989 [5] Dong Y X, Lin H Z, Lu L G.Sobolev inequalities in manifolds with asymptotically nonnegative curvature. arXiv:2203.14624 [6] Ecker K. Logarithmic Sobolev inequalities on submanifolds of Euclidean space. J Reine Angew Math, 2000, 522: 105-118 [7] Gross L. Logarithmic Sobolev inequalities. Amer J Math, 1975, 97(4): 1061-1083 [8] Perelman G.The entropy formula for the Ricci flow and its geometric applications. arXiv preprint math/0211159 [9] Pigola S, Rigoli M, Setti A G.Vanishing and Finiteness Results in Geometric Analysis. Basel: Springer Science & Business Media, 2008 [10] Yi C Y, Zheng Y.The logarithmic Sobolev inequality for a submanifold in manifold with nonnegative sectional curvature. arXiv:2104.05045 [11] Zhang Q S. Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincaré Conjecture. Boca Raton: CRC Press, 2011 [12] Zhu S H. A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications. Amer J Math, 1994, 116(3): 669-682 |